

ADVANCING AUTONOMY AND SECURITY IN FUTURE

COMPUTING SYSTEMS WITH BLOCKCHAIN AND

SUPERSINGULAR ISOGENY

by

 Miraz Uz Zaman, B.S., M.S.

A Dissertation Presented in Partial Fulfillment

of the Requirements of the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE

LOUISIANA TECH UNIVERSITY

August 2023

GS Form 13a

(01/20)

LOUISIANA TECH UNIVERSITY

GRADUATE SCHOOL

May 17, 2023

Date of dissertation defense

We hereby recommend that the dissertation prepared by

Miraz Uz Zaman, B.S., M.S.

entitled Advancing Autonomy and Security in Future Computing Systems with

Blockchain and Supersingular Isogeny

be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computational Analysis & Modeling

Manki Min

Supervisor of Dissertation Research

Weizhong Dai

Head of Computational Analysis & Modeling

Approved: Approved:

Hisham Hegab Ramu Ramachandran

Dean of Engineering & Science Dean of the Graduate School

Doctoral Committee Members:

Manki Min

Galen Turner

Pradeep Chowriappa

Andrey Timofeyev

Ibrahim Abdoulahi

ABSTRACT

The exponential growth of data and increasing connectivity necessitate the

evolution of computing systems to handle vast amounts of data and support real-time

processing. This evolution is further driven by emergence of technologies like AI,

machine learning, Blockchain, and quantum computing which shapes the future of

computing systems. Future computing systems are expected to be more intelligent,

interconnected, automated, secure, and efficient, enabling advanced applications across

various industries. To fully harness the opportunities presented by these future

computing systems, it is essential to develop tools and mechanisms that enhance

autonomy and security. This dissertation focuses on two such tools: the Blockchain

consensus mechanism and the supersingular isogeny-based hash function, which have

the potential to significantly enhance autonomy and security in future computing

systems.

In the study of Blockchain consensus mechanisms, two distinct methods have

been proposed. The first method is called “proof of sincerity,” which is designed

to be mobile-friendly and fairer in rewarding. It rewards all miners, regardless of

their computing power, based on their sincerity level, which is a measure of their

contribution to the network. This approach reduces resource waste and enhances

security compared to other methods like proof of work.

iii

iv

The second method is designed for Blockchain-based data storage, which offers

many advantages over third-party cloud storage, such as data security, integrity, and

reliability. This proposed consensus mechanism allows most devices or entities to

participate by performing low computational validation work. The proposed consensus

mechanism is analyzed using game theory and queuing theory to further validate its

effectiveness.

The study on supersingular isogeny hash includes the presentation of different

compact implementations of the CGL function, which is based on the traversal in a

supersingular isogeny graph and was proposed by Charles, Goren, and Lauter. The

compact implementations utilize various forms of elliptic curves, such as Weierstrass,

Montgomery, and Legendre. Furthermore, the study compares the running time and

the total number of collisions observed in experiments conducted with the implemented

algorithms.

Additionally, a novel single compression cryptographic hash function is pro-

posed, which is based on the traversal in the supersingular isogeny graph using the

2-isogeny and point mapping under the isogeny. Unlike existing supersingular isogeny-

based hash functions, the proposed function outputs the X-abscissa of a point on a

supersingular elliptic curve without revealing the j-invariant of the traversed curve.

The computational complexity of the proposed hash function is analyzed and compared

to the CGL and CGL-like hash functions.

The combination of the Blockchain consensus mechanism and Supersingular

Isogeny Hash offers a compelling path towards advancing the autonomy, security,

and post-quantum capabilities of Blockchain networks. By harnessing their collective

v

strengths, new frontiers can be unlocked in secure and decentralized computing,

revolutionizing industries and shaping the future of trusted digital transactions.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood

that “proper request” consists of the agreement, on the part of the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval of the

author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation.

Author _____________________________

Date _____________________________

GS Form 14
(5/03)

DEDICATION

I dedicate this work wholeheartedly to my parents, who have been the corner-

stone of my journey with their unwavering love, support, and sacrifices. Their belief

in me and constant encouragement have propelled me forward.

I also dedicate this work to my beloved beautiful wife, who has been my guiding

light with her understanding, patience, and unwavering faith in my abilities. She has

stood by my side throughout this endeavor with endless love and support.

I dedicate this work to my dear son, who is the driving force behind my pursuit

of knowledge and my greatest inspiration. I hope that this work sets an example of

perseverance and the pursuit of dreams for him.

Lastly, I would like to thank my wonderful sister for her invaluable belief in

me and constant encouragement.

Thank you all for being my pillars of strength.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

DEDICATION.. vii

LIST OF TABLES.. xi

LIST OF FIGURES.. xii

ACKNOWLEDGMENTS ...xiv

CHAPTER 1 INTRODUCTION... 1

1.1 Overview ... 1

1.2 Motivation... 4

1.3 Organization of the Dissertation ... 6

CHAPTER 2 BACKGROUND .. 8

2.1 Blockchain... 8

2.1.1 Proof of Consensus .. 8

2.1.2 Decentralized Storage with Blockchain.. 12

2.2 Essential Concepts of Supersingular Isogenies .. 14

2.2.1 Elliptic Curve over Finite Field... 14

2.2.2 Isogeny... 15

2.2.3 Isogeny Graph ... 16

2.2.4 Supersingular Isogeny Based Hash .. 17

viii

ix

CHAPTER 3 BLOCKCHAIN CONSENSUS AND STORAGE ARCHITEC-
TURE .. 22

3.1 Proof of Sincerity .. 22

3.1.1 Unfairness in PoW... 23

3.1.2 Sincerity... 25

3.1.3 Fairer Rewarding Scheme .. 27

3.1.4 Comparison of Different Consensus Mechanism 30

3.2 Blockchain Based Storage Architecture .. 31

3.2.1 Proposed Scheme... 32

3.2.2 Analysis ... 37

3.2.3 Queuing Theoretic Analysis .. 40

3.2.4 Conclusion ... 43

CHAPTER 4 SUPERSINGULAR ISOGENY BASED HASH FUNCTION 45

4.1 Implementation Aspects of Supersingular Isogeny-Based Cryptographic
Hash Function... 45

4.1.1 Compact CGL Hash Algorithms in Short Weierstrass Form......... 46

4.1.2 Compact CGL Hash algorithms in Montgomery Form.................. 48

4.1.3 Compact CGL Hash Algorithms in Legendre Form 49

4.1.4 Yoshida et al. Proposed Method for Computing CGL Hash 51

4.1.5 Result and Discussion.. 52

4.1.6 Conclusion ... 55

4.2 Supersingular Isogeny-Based Single Compression Hash Function............. 56

4.2.1 Proposed Single Compression Hash Algorithm 57

4.2.2 Computational Problems... 63

x

4.2.3 Computational Cost and Result .. 65

4.2.4 Conclusion ... 67

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS................................... 69

5.1 Conclusions ... 69

5.2 Future Works .. 71

5.2.1 Study on Legendre Curve .. 71

5.2.2 Post-Quantum Blockchain ... 72

BIBLIOGRAPHY... 75

LIST OF TABLES

Table 3.1: Comparison of different consensus mechanism.................................... 31

Table 3.2: When at least one honest selector is present in the validation process 38

Table 3.3: When there is no honest selector is present in the validation process. 39

Table 4.1: CGL Hash operation counts for different algorithms 53

Table 4.2: CGL Hash costs comparison for different algorithms.......................... 53

Table 4.3: Comparison of computational cost.. 66

Table 4.4: Parameter for single block message simulation of the proposed hash
function... 68

xi

LIST OF FIGURES

Figure 2.1: The 2-isogeny graph for F2112 .. 17

Figure 2.2: Flowchart of CGL Hash .. 19

Figure 2.3: CGL propagation path in 2-isogeny graph of F1392 20

Figure 3.1: Expected number of hash computation per difficulty for different
types of machines.. 25

Figure 3.2: Expected time of hash computation per difficulty for different types
of machines ... 25

Figure 3.3: Expected number of hash computation per sincerity for different
types of machines.. 28

Figure 3.4: Expected time of hash computation per sincerity for different types
of machines ... 28

Figure 3.5: Diagram of role interactions.. 33

Figure 3.6: Workflow of section announcement and section validation 37

Figure 3.7: Nash profile for the positive selector for penalty ratio 2..................... 41

Figure 3.8: Nash profile for the positive selector for penalty ratio 5..................... 41

Figure 3.9: Number of colluder vs Penalty ratio ... 42

Figure 3.10: M/M/1 queue... 43

Figure 4.1: Comparison of average computation time and total number of
collisions for 220 number of 128 input bit strings over different size
of finite field Fp2 .. 54

Figure 4.2: Total number of collisions for different length of input bit strings 55

Figure 4.3: Flowchart of the steps of proposed hash algorithm 61

xii

xiii

Figure 4.4: Comparison of computational cost for hash functions 67

ACKNOWLEDGMENTS

I extend my deepest gratitude and appreciation to my esteemed advisor, Dr.

Manki Min, for his unwavering support and guidance throughout my entire academic

journey in Louisiana Tech. Dr. Min’s exceptional mentorship has not only helped

me refine my thought process but has also provided invaluable insights that aided

me in making crucial decisions, both academically and personally. His continuous

availability and willingness to assist whenever I needed help have been indispensable

in my pursuit of a doctorate. I consider myself extremely fortunate to have had Dr.

Min as my advisor, as his constant support has played a pivotal role in the successful

completion of my work.

I would also like to express my sincere thanks to Dr. Aaron Hutchinson for

generously dedicating his valuable time to address all the inquiries I had regarding

supersingular isogeny. His expertise and insights have made a significant impact on

the development of my research.

Furthermore, I am deeply grateful to the esteemed members of my dissertation

advisory committee, Dr. Galen Turner, Dr. Pradeep Chowriappa, Dr. Andrey

Timofeyev, and Dr. Ibrahim Abdoulahi, for their valuable feedback, constructive

suggestions, and insightful criticism. Their contributions have played a vital role in

shaping the quality and direction of my work.

xiv

xv

In addition, I would like to acknowledge and express my heartfelt gratitude to

Dr. Collin Wick and Dr. B. Ramu Ramachandran for their exceptional leadership in

the graduate school. Their support has been instrumental in overcoming significant

financial challenges that I would have otherwise faced in completing my degree. I

am truly grateful for their generosity, which has enabled me to reach this significant

milestone in my academic journey.

Lastly, I would like to extend my appreciation to the Louisiana Board of

Regents for their support of my work through grant GR301278.

To all those mentioned above, as well as to anyone else who has contributed to

my academic and personal growth, I offer my deepest appreciation and thanks. Your

unwavering support and belief in my abilities have been invaluable, and I am truly

grateful for the role each of you has played in my success.

CHAPTER 1

INTRODUCTION

1.1 Overview

We live in an era of ubiquitous and interconnected computing systems. The

system comprises smartphones, laptops, smart watches, smart home appliances, and

many more devices. The internet and the development of technologies have facilitated

unparalleled connectivity and allowed us to seamlessly exchange information and

collaborate in ways that were once impossible. As technology is evolving rapidly,

users’ expectations and demands are growing. Moreover, with every advancement,

new possibilities emerge, expanding the potential for innovation and growth. In this

rapidly shifting paradigm of computing systems, the future computing system needs

to be distributed, decentralized, and secure to keep it reliable.

Autonomous systems are self-governing networks that lack centralized control,

with each participant having a designated role to play. Compared to centralized

networks, autonomous systems are more secure, resilient, and democratic since they

lack a single point of failure, and all participants can influence network governance.

In autonomous systems, data security and transparency are critical aspects. The

decentralized and immutable nature of Blockchain, coupled with its smart contract

automation capabilities, makes it a powerful tool for enhancing autonomy and security.

1

2

By implementing Blockchain in computing systems, they can attain self-governance,

self-configuration, self-optimization, and self-protection [1]. For instance, Blockchain

enables computing systems to manage resources independently, verify transactions,

optimize performance, and defend against attacks [2]. Blockchain also empowers users

and devices to interact directly with each other, eliminating the need for intermediaries

and third-party services or platforms. This enables peer-to-peer communication,

collaboration, coordination, user-centric data ownership, and control [3]. Devices

and users can share spectrum, exchange data, provide services, and make decisions

leveraging the capabilities of Blockchain [2]. Moreover, the immutability nature of

Blockchain ensures that data in the chain cannot be altered or erased, making the

system transparent. A mature Blockchain technology that possesses all the qualities

of an autonomous system is essential for the future decentralized web (Web 3.0).

In a Blockchain, a consensus mechanism is the foundation of the network.

However, many existing consensus algorithms tend to become more centralized as

the network grows, giving more power and influence to a few users. This undermines

the potential of Blockchain for various applications that require decentralization and

trustlessness. Hence, there is a demand for a new consensus mechanism that can

maintain its decentralization and scalability as the network expands, enhancing the

opportunity for different applications of Blockchain.

However, the significant opportunity in the computing system also comes with

significant risks, such as cybersecurity threats, privacy violations, system failures,

data breaches, and other threats. These traditional threats are already a significant

challenge, but the looming threat of quantum computing attacks compounds them.

3

These attacks rely on the principle of implementing Shor’s algorithm [4], which

can efficiently break many of the public-key cryptography algorithms that underpin

currently used secure computing systems [5]. The principal idea of the quantum

computer is to leverage the quantum mechanical phenomena to find high-quality

solutions to problems considered hard or impossible to solve, even with the largest

supercomputer available. Thus, there is a growing need for innovative solutions to

address these threats and facilitate the creation of more autonomous and secure

computing systems.

According to a report by the US National Academy [6], we are roughly a

few decades away from a fully-fledged quantum computer, which poses a significant

threat to the existing computing system. To counter the looming danger of quantum

computing attacks, a field called post-quantum cryptography (PQC) has emerged,

which can withstand the quantum attack and seamlessly integrate with the current

system. In 2016, the National Institute of Standards and Technology (NIST) initiated

a project to develop new standards and protocols for post-quantum public key

cryptography. After several rounds of evaluation, four algorithms have been chosen for

standardization, while four more algorithms headed to the fourth round as alternative

candidates for the analysis. SIKE [7] an isogeny-based key encapsulation scheme

is an alternative algorithm that builds upon Supersingular isogeny Diffie-Hellman

key exchange or SIDH [8]. SIKE is recently broken by different researchers [9–11]

separately exploiting the information exchanged in protocol. Nonetheless, isogeny-

based cryptographic schemes that do not rely on the exploited information are still

considered safe from such attacks. Isogeny-based cryptographic schemes are gaining

4

attention from researchers due to their low key size and the computational hardness of

isogeny calculations. Given that a cryptographic hash function is a fundamental tool

in any cryptographic system, the inclusion of an efficient isogeny-based hash function

would be a valuable addition to the suite of post-quantum cryptographic tools.

1.2 Motivation

In a Blockchain system, the consensus mechanism is the process by which all

stakeholders in the network agree on the state of the network and the validity of

transactions. A consensus mechanism should be designed to accumulate agreement

from all the stakeholders so that the group interest is prioritized over any individual’s

interest and ensure equal weighting. It should also allow new stakeholders to join

the network efficiently. Different consensus mechanisms are used in the Blockchain

network depending on their use case and the requirements of the network. Proof of

work (PoW) [12] is one of the well-known and most used consensus mechanisms based

on the idea of solving complex mathematical problems to add the transaction to the

Blockchain. Bitcoin and most cryptocurrencies are based on the PoW or PoW alike

consensus mechanism. However, PoW and other variants are resource intensive and

can lead to monopolization or centralization by giving more power to stakeholders with

higher computing resources. Hence, there is a demand for consensus mechanisms that

can enable smaller stakeholders to participate and contribute equally to the network.

While the initial application of Blockchain technology was primarily related to

cryptocurrencies, its evolved features have the potential to impact numerous industries.

For example, Blockchain can be used for healthcare, digital voting, decentralized

5

governance, and data sharing. In today’s world, interconnected computing systems

produce a vast amount of data, primarily stored, processed, and distributed using

cloud-based storage. However, most cloud-based storage is centrally controlled and

backed by a handful of technology companies with incredible data storage, which poses

significant challenges such as data breaches, server malfunctions, high storage costs,

unavailability of storage servers, and lack of data validity. Decentralized Blockchain-

based data storage can address this challenge due to its inherent characteristics.

Nonetheless, Blockchain-based storage also faces some challenges, such as scalability,

network speed, and latency. These challenges can be overcome by carefully assigning

different roles to users based on their capabilities and by optimizing the trade-off

between the inherent features of Blockchain and its limitations. A Blockchain-based

data storage platform that provides an optimized balance between the advantages and

limitations of the technology could be a vital component in an autonomous system.

In order to ensure the security of computing systems, a vital component is

a cryptographic hash function. A cryptographic hash function has many uses in

cryptography, either as a standalone tool or as a component of other schemes. For

example, Blockchain storage uses hash functions to generate unique identifiers for

each data block and to validate transactions on the network. Some applications

of cryptographic hash functions are message authentication code (MAC), password

verification, signature generation, and verification. A cryptographic hash function

should be efficient and secure. This means it should be difficult to find two inputs

with the same output (collision-free) or to find an input that matches a given output

(preimage resistant). Additionally, the output of the hash function should be evenly

6

distributed. However, the security of conventional cryptographic hash functions

may not hold against quantum adversaries. Some researchers have argued that

quantum attacks can compromise the collision and preimage resistance of some hash

functions [13], while others have claimed that quantum attacks are not feasible in

practice [14].

To address the quantum threat, Charles, Goren, and Lauter proposed a

quantum-resistant hash function based on supersingular isogeny graphs (expander

graph) ter in 2009 [15] known as CGL hash. This hash function uses a pseudo-random

walk on the graph starting from a fixed supersingular elliptic curve over Fp2 and

computes 2-isogenies along the way. The input bit string determines the direction of

each step on the graph. The security of this hash function depends on the difficulty of

finding an isogeny between two given supersingular curves, which is exponentially hard

for quantum algorithms [8, §5]. However, if the endomorphism ring of the starting

curve is known [16] or easy to compute [17], then the hash function can be broken.

When the endomorphism ring of the initial curve is unknown, CGL security still

relies on the difficulty of finding an isogeny between two supersingular elliptic curves.

Additionally, the original proposal of the CGL hash function includes some redundant

computations that can be minimized by utilizing unique non-trivial characteristics

of elliptic curve computations. Supersingular isogeny hash functions are promising

candidates for post-quantum cryptography if their efficiency can be improved.

1.3 Organization of the Dissertation

The dissertation is structured as follows:

7

Chapter 2 provides an overview of widely used consensus methods in Blockchain,

along with an exploration of the fundamental concepts of supersingular isogeny and

the details of the CGL hash function.

Chapter 3 discussed two proposed mobile-friendly Blockchain consensus mech-

anisms in detail. The first mechanism, Proof of Sincerity, facilitates easier mining and

rewards for all sincere miners. The second mechanism focuses on a Blockchain-based

storage system.

Chapter 4 demonstrates efficient implementations of the CGL hash function

using different elliptic curves. Additionally, it proposes a supersingular isogeny-based

single compression cryptographic hash function.

Finally, Chapter 5 concludes the dissertation, offering remarks on the findings

and suggesting future research directions based on the study’s outcomes.

CHAPTER 2

BACKGROUND

This chapter provides a review of some fundamental concepts that are relevant

to this thesis. The first section 2.1 presents some common methods for achieving proof

of consensus and some Blockchain-based storage architectures. The second section 2.2,

covers some essential aspects of supersingular elliptic curves and their isogenies, which

are the foundation for a category of post-quantum cryptographic schemes. The section

will conclude with a brief overview of the CGL hash function, as well as other hash

functions based on Supersingular Isogeny.

2.1 Blockchain

2.1.1 Proof of Consensus

Blockchain is a distributed and decentralized database. As the name suggests,

Blockchain is a chain of blocks where each block stores the data of transactions,

timestamps, and a hash of the previous blocks. Here hash links the previous block to

the current block and creates a chronological event of data. Now to add a block in the

Blockchain, the participants in the network need to agree upon a block. The process

for agreement among the participants for a block is called the consensus mechanism.

Some of the widely known proof of the consensus mechanism of Blockchain will be

discussed here.

8

9

Proof of Work

Bitcoin is the first cryptocurrency that uses the Proof of Work (PoW) consensus

mechanism [12], which combines the algorithm proposed by Dwork and Naor [18] with

cryptographic signatures, Merkle chains, and P2P networks. The process to add the

block in the Bitcoin Blockchain is called mining, and the entity responsible for adding

the block is called miner. To add a new block, miners must solve a time-consuming

mathematical puzzle to find an integer or random data point (nonce) that produces

an output with a predetermined number of leading zeros through SHA-256 (Secure

Hash Algorithm) [19]. The hash output must have a number of leading zeros equal to

or lower than a predefined target. The first miner who finds a valid nonce gets a fixed

amount of bitcoins as a reward, which decreases by half every 210,000 blocks [20], or

roughly every four years at the current rate (1800 bitcoins/day). The PoW consensus

mechanism is a huge energy consumer, and its electricity usage matches that of the

whole country of Ireland [21]. Moreover, the mining technology has evolved from CPU

to GPU (Graphics processing unit), GPU to FPGA (Field-programmable gate array),

and FPGA to ASIC (Application-specific integrated circuit) [22], making it more

expensive and less accessible for ordinary users. The average time for a new block to

be added to the Bitcoin Blockchain is ten minutes [23]. A significant drawback of the

PoW consensus mechanism is the possibility of a 51% attack [24], where a miner or a

group of miners who control more than half of the network’s computing power can

invalidate any valid transaction.

10

Proof of Stake

In 2012, an alternative consensus protocol called Proof of Stake (PoS) was

proposed in [25] as a solution to the energy consumption problem of PoW. Instead of

energy-intensive competition, PoS selects the next block miner based on a combination

of random selection and stake (wealth or age). This means there is no need for miners

to compete for the right to mine blocks, which can be less energy-intensive than PoW.

A well-known cryptocurrency that uses a hybrid of PoW and PoS is Ethereum, which

plans to transition to PoS entirely in the future. However, PoS has some drawbacks,

such as requiring a minimum stake to participate as a validator, which may exclude

some potential validators and lead to the centralization of power among the wealthy.

Additionally, PoS is vulnerable to the double-spending problem due to a nothing-at-

stake [26] attack, in which a dishonest miner works on multiple forks simultaneously

without risking their stake, enabling attackers to invalidate their spending. Several

variations of PoS have been proposed to address some of the limitations of the original

protocol. One of the most popular variations is delegated PoS [27], in which token

holders elect validators to participate in block validation. Another variation is bonded

PoS, in which validators must stake a certain amount of cryptocurrency to participate

in block validation.

Proof of Activity

Proof of activity (PoA) [28] is a hybrid consensus mechanism that combines

PoW and PoS, introduced as part of peercoin cryptocurrency. In PoA, miners compete

to solve cryptographic puzzles like PoW to mine blocks. Following this, miners are

11

required to demonstrate ownership of a specified amount of coins to transition into the

PoS stage. In PoS, the new validator is chosen based on the coin the user owns. PoA

offers better energy efficiency and decentralization than PoW and PoS, respectively.

However, it also poses challenges in terms of complexity and maintenance.

Proof of Space

Proof of space (PoSpace) was introduced in 2013 as an alternative to PoW

and PoS, and later in 2018, it was incorporated into the Chia cryptocurrency. In

PoSpace, nodes must demonstrate that they have allocated some storage space to

participate in the block validation process. The miner invests in hard drive space, and

their likelihood of being the next block miner is proportional to the amount of storage

space they have allocated. Other algorithms, such as Proof of Capacity and Proof of

Storage, have been developed based on this approach. While PoSpace offers superior

energy efficiency, it also has some drawbacks, such as high initial storage requirements,

verification complexity, and the potential for centralization.

Proof of Time

A consensus mechanism based on the passage of time is called proof of time

(PoT). In PoT, the nodes do not need to use a lot of computing power or storage

space, but they need to spend time on the network. To do this, they use a verifiable

delay function (VDF), which is a type of cryptographic function that takes a fixed

amount of time to calculate. Nodes that spend more time online are more likely to

compute the VDF and participate in block validation. PoT is more efficient in terms

12

of energy and space than other consensus mechanisms, but its security level is still

unclear to researchers.

2.1.2 Decentralized Storage with Blockchain

STORJ

Many Blockchain-based file-sharing systems use BitTorrent [30], a well-known

peer-to-peer protocol, as their model. STORJ [31] is another open-source and

decentralized Blockchain-based storage platform that resembles BitTorrent. Like

BitTorrent, STORJ divides the file into several chunks through file sharding and

distributes them across the STORJ network. However, STORJ differs from BitTorrent

in using a distributed hash table to locate the file chunks so that only the file owner

knows their locations. The core component of the STORJ network is Kademlia [32], a

distributed hash table. Additionally, the file owner has the option to choose different

levels of redundancy to increase the file’s availability on the network.

Sia

Sia [33] is a decentralized storage platform that leverages Blockchain technology

for data storage. It was proposed in 2013 during HackMIT, a prestigious annual

hackathon hosted by MIT. On Sia, storage providers, and clients negotiate contracts

for storing and paying for data. The contracts also specify the size and duration of

the data, the frequency and reward of proofs, and the penalty for missing proofs. The

storage provider must prove that the data is still intact and stored using the consensus

mechanism, Proof of Storage [34]. This consensus mechanism verifies the availability

and integrity of data. Contracts are successfully terminated when the storage duration

13

ends or unsuccessfully terminated when the maximum number of missed proofs is

exceeded. These contracts are stored on the Blockchain network, ensuring they are

publicly auditable, immutable, and decentralized. Sia claims to offer cloud storage

that is 90% cheaper than traditional providers like Amazon S3.

IPFS

Protocol Labs has developed Interplanetary File System (IPFS) [35], an open-

source, decentralized file-sharing technology considered a successor to modern internet

architecture. The addressing format used in IPFS is different from the traditional

location addressing used in HTTP. IPFS uses content addressing, meaning each file is

referred to by a unique address based on the hash of the file’s content. This allows

for faster retrieval, deduplication, and caching of data. Each IPFS object contains

two fields: unstructured binary data less than 256 kB and links to other IPFS objects.

The link structure consists of three data fields: the name of the link, the hash of the

linked IPFS object, and the cumulative size of the linked IPFS object. The link list

remains empty if the data block is smaller than 256 kB. IPFS does not have a built-in

mechanism for versioning files, so users must rely on external tools or protocols to

track changes in their data. To incentivize users to contribute storage and bandwidth

to the network, a cryptocurrency called FileCoin [36] has been developed on top of

IPFS. FileCoin rewards users for hosting and retrieving files on IPFS.

14

2.2 Essential Concepts of Supersingular Isogenies

2.2.1 Elliptic Curve over Finite Field

A finite field Fq is a field with q elements, where q = pk and p is a prime. An

elliptic curve E is a non-singular projective curve of genus 1 defined over a finite field

Fq. The equation of such a curve in affine coordinates can be written as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients a1, a2, a3, a4, a6 ∈ Fq. Other than the Weierstrass form, elliptic

curves can be represented in other well-known forms [37, §II.B], such as the Montgomery

form, Legendre form, Edward curves, etc., each of which shows a wide variety of

computational costs for arithmetic operations and isogeny computations in the prime

field.

The set of points on an elliptic curve over Fq, together with a special point

called the point at infinity OE, forms an abelian group E(Fq) under a geometric

operation called point addition. The order of a point P = (xp, yp) ∈ E(Fq) is the

smallest positive integer n such that nP = OE, where nP denotes adding P to itself n

times. The size of the group E(Fq), denoted by #E(Fq), is approximately equal to q,

as stated by Hasse’s theorem [38, §V.1]. More precisely, cardinality of E(Fq) satisfies

||E(Fq)| − (q + 1)| ≤ t, where t is the trace of Frobenius and satisfies |t| ≤ 2
√
q. An

elliptic curve over Fq can be classified as either supersingular or ordinary depending on

the value of t. If t is divisible by the characteristic p, then the curve is supersingular;

otherwise, it is ordinary. Another way to distinguish between supersingular and

ordinary curves is by looking at their p-torsion subgroups, which are the subsets of

15

points whose order is a power of p. A supersingular curve has a trivial p-torsion

subgroup, i.e., E[p] = 0, while an ordinary curve has a non-trivial one [38, §V.3].

Post-quantum security researchers focus more on supersingular elliptic curves than

ordinary ones since a sub-exponential-time quantum algorithm for solving the discrete

logarithm problem on ordinary elliptic curves was discovered by Childs, Jao, and

Soukharev in [39].

2.2.2 Isogeny

Suppose f : E → E ′ is a function that maps points on one elliptic curve

E to another elliptic curve E ′ in a way that preserves their group operation, i.e.,

f(OE) = f(OE′) where OE and OE′ are the identity elements of E and E ′ respectively.

This function f is called a morphism [40, §3]. Two elliptic curves E and E ′ over Fq are

isomorphic if they have the same shape, which is measured by their j-invariant, i.e.,

j(E) = j(E ′). Now, a surjective and non-constant morphism is called an isogeny. If an

isogeny ϕ : E → Ẽ exists, then ϕ(OE) = OẼ, and ϕ induces a group homomorphism

between E and Ẽ. The two elliptic curves are said to be isogenous to each other

if an isogeny exists between them. Each isogeny ϕ has a unique dual isogeny ϕ̂ :

Ẽ/Fq → E/Fq, such that ϕ̂ ◦ ϕ = [degϕ] and ϕ ◦ ϕ̂ = [degϕ̂], where [n] denotes the

multiplication-by-n map on the elliptic curve [38, §III.6.1]. An equivalence relation

can be defined based on the isomorphic classes of elliptic curves defined over Fq,

where the isogenous elliptic curves belong to the same isogeny class. The degree of

isogeny denoted as degϕ is equal to the number of points in the kernel of isogeny, i.e.,

degϕ = |ker(ϕ)| for a separable and non-constant isogeny. The kernel of an isogeny

16

ϕ is the list of finite subgroup order of points of E over Fq. An isogeny is typically

expressed with its kernel; for example, an ℓ-isogeny would have a kernel of size ℓ. An

ℓ-isogeny, for example, would have a kernel of size ℓ. In isogeny-based cryptography,

V’elu’s formula [41] is the most commonly used method to compute the isogeny, which

uses the knowledge of the kernel points to compute the isogeny.

2.2.3 Isogeny Graph

Since all the supersingular elliptic curves over a field of characteristic p belong

to the same isogeny class and can be defined over either Fp or Fp2 , the field can be

chosen as Fq = Fp2 [42]. The j-invariant is a unique element of Fp2 that characterizes

the isomorphism class of an elliptic curve. An isogeny graph can be defined as a graph

whose vertices are elliptic curves over Fp2 and whose edges are isogenies of a fixed

degree l between them. Such a graph has two components: one consisting of ordinary

elliptic curves and the other of supersingular ones. The two components are disjoint

because of the isogenous relation between the supersingular elliptic curves.

Pizer [43, 44] proved that the supersingular component has the property of

being a Ramanujan graph [45], which is a highly connected regular graph also known

as an expander graph. Here the supersingular component is the main focus since it is

strongly connected and has applications in post-quantum cryptography. More details

on Ramanujan graphs can be found in [45, 46]. The vertices in the isogeny graph are

expressed as j-invariants, which can be computed directly from the curve equation.

Now, in a supersingular isogeny graph, the total number of unique vertices are p
12

+ ϵ

where ϵ ∈ {0, 1, 2} depends on the characteristics of the field.

17

Figure 2.1 [47] illustrates a 2-isogeny graph over F2112 . It has 18 vertices,

corresponding to supersingular j-invaraints, and 2-isogenies as edges between them.

Most vertices have three neighbors, except for the one with j-invariant 40, which has

only two neighbors. However, it is widely believed that this behavior is rare, and as p

grows, the number of such exceptional vertices remains small.

3i+ 135

208i+ 135

111i+ 183

148

28

198

164i+ 118

189i+ 119

82

45i+ 130

166i+ 130

114
47i+ 118

100i+ 183

40

162i+ 45

49i+ 45

22i+ 119

Figure 2.1: The 2-isogeny graph for F2112

2.2.4 Supersingular Isogeny Based Hash

CGL

The isogeny graph possesses strong pseudo-random properties because of rapid

mixing during random navigation, just like the expander graph. Cryptographic

applications, such as those mentioned in [48,49], have made use of these properties.

The CGL hash function is a de-facto supersingular isogeny-based hash algorithm

that exploits the pseudo-random nature of the isogeny graph to generate a collision-

free hash function. The function takes a bit stream of the message and initiates a

non-backtracking traversal in the 2-isogeny graph G2 over Fp2 from a fixed curve

(vertex). The output of the CGL hash function is the j-invariant of the end curve

18

in the traversal. Since different initial elliptic curves E ∈ G2 give different outputs

for the same input, we can get a family of hash functions indexed by j-invariant.

Theoretically, a 2-isogeny graph G2 is almost equivalent to a 3-regular graph, with

each curve having three adjacent edges (isogenies) leading to neighboring curves. To

avoid backtracking, one of the edges is permanently ignored, leaving only two edges

to follow from each curve to the next. A consistent rule is set to assign bits 1 and 0

to these two edges, leading one curve to the next curve.

Suppose a starting vertex or supersingular elliptic curve of the form

E1 : y
2 = f1(x) = (x− x1)(x− x2)(x− x3)

where (x1, x2, x3) ∈ Fp2 . This implies that there are three non-trivial 2 torsion points

of E1 that can be expressed as a set {(x1, 0), (x2, 0), (x3, 0)}. Now let E2 be another

supersingular elliptic curve given by y2 = f2(x), which is 2-isogenous to E1, and let

ϕ be the isogeny with kernel ⟨(x1, 0)⟩. Then the images of the other two torsion

points (x2, 0) and (x3, 0) under ϕ are the same point on E2, that is, ϕ(x2, 0) = ϕ(x3, 0).

On the other hand, the dual isogeny ϕ̂ maps E2 back to E1, and its kernel is either

⟨(x2, 0)⟩ or ⟨(x3, 0)⟩ on E2. This is what CGL calls the backtracking isogeny. To

prevent backtracking, one efficient way is to factor out the new cubic function f2(x)

by (x − x̂2), where x̂2 is the x-coordinate of ϕ(x2, 0). This results in a quadratic

polynomial whose roots are the x-coordinates of the remaining two torsion points.

The CGL hash function assigns a bit value to each torsion point according to a fixed

rule. The chosen point becomes the new kernel point for the next step in the graph or

the next isogenous curve. Thus, for an input string of n bits, the CGL hash function

19

takes n steps in the 2-isogeny graph. The output of the CGL hash function is the

j-invariant of the final supersingular elliptic curve in the walk. Figure 2.2 [47] shows

a flowchart of the CGL hash function.

Start

E or y2 = f(x),
(P1, P2) ∈ E[2]

Input bit strings
b1, b2, b3, · · · , bn

i > n Choose P ∈ {P1, P2}

Compute
ϕ : E → Ê = E/⟨P ⟩,

P̃ = ϕ(P̂)

Calaculate

f̂quad(x) =
f̂(x)

(x− x(P̃))

Find the quadratic
roots (P1, P2)
of f̂quad(x)

Set E ← Ê

j− invariants(E)

Stop

i = 1 No

i+ 1

Yes

Figure 2.2: Flowchart of CGL Hash

Figure 2.3 depicts an example of path propagation of the CGL hash function

in a supersingular 2-isogeny graph over F1392 . The graph has 12 vertices, each

representing a unique isomorphic class of supersingular elliptic curves determined by

their j-invariant. All the vertices except 60 and 100 in the graph show the expected

behavior of 2-isogenies. Suppose the input bit string is “1011” and the starting vertex

is 96i + 57. Moreover, consider when the first bit is processed, the CGL function

reaches vertex 103i+123. For the second bit, the CGL function avoid the backtracking

path from the current vertex to 96i+ 57. Then, it reaches vertex 36i+ 123 by taking

one of the remaining two non-backtracking edges. In a similar way, by consuming the

20

60

100i+ 135

103i+ 123

43i+ 5796i+ 57

65
100

39i+ 135

36

44

36i+ 123

8

1

1

1

1

0

0

0

0

Start

End

Figure 2.3: CGL propagation path in 2-isogeny graph of F1392

last two bits, the CGL function finally reaches vertex 44, which is the output of the

CGL hash.

Other SI Based Hash

Yoshida and Takashima suggested an improvement to the 2-isogeny hash

function (CGL) in their paper [50]. They utilized observations on the 2-torsion

point information on short Weierstrass elliptic curves to remove some redundant

computations.

Doliskani, Pereira, and Barreto presented a variant of the CGL hash function

in [51] that operates on field characteristics of the form p = 2nf ± 1, where f > 0

is a small integer. Instead of processing one bit at a time like CGL, their algorithm

processes a block of length n ≈ log p. The authors demonstrated that their algorithm’s

running time is asymptotically quasi-linear in n, while CGL’s running time is quadratic

in n. However, it can be shown that, with an upper bound approximation, both hash

algorithms yield the same running time.

21

Panny introduced a modified version of the SI hash function that incorporates

cyclic l-isogeny, where l varies rather than being fixed at l = 2 in each step [52, §2].

In a separate study, Tachibana, Takashima, and Takagi proposed another variation

of the CGL function utilizing 3-isogenies [53]. This 3-isogeny-based hash function

employs a straightforward representation of backtracking 3-torsion points. The input

is transformed into a ternary expansion, and the mapping of {0, 1, 2} to three non-

backtracking edges of each vertex is utilized to apply 3-isogenies. Despite the different

methods employed, both the computational complexities of this hash function and

the CGL function remain equivalent.

CHAPTER 3

BLOCKCHAIN CONSENSUS AND STORAGE
ARCHITECTURE

The content in this chapter has been published in the following conferences:

• M. U. Zaman, T. Shen and M. Min, “Proof of Sincerity: A New Lightweight

Consensus Approach for Mobile Blockchains,” 2019 16th IEEE Annual Consumer

Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 2019,

pp. 1-4, doi: 10.1109/CCNC.2019.8651742 [54].

• M. U. Zaman and M. Min, “Decentrally-Consented-Server-Based Blockchain

System for Universal Types of Data,” 2020 International Symposium on Networks,

Computers and Communications (ISNCC), Montreal, QC, Canada, 2020, pp.

1-6, doi: 10.1109/ISNCC49221.2020.9297229 [55].

3.1 Proof of Sincerity

Bitcoin’s emergence has led to the introduction of various distributed consensus

methods to replace the central authority in maintaining the integrity of distributed

ledgers. However, none of the existing methods have found a good balance between

preventing wealth inequality and protecting the security of the ledgers. The proof

of sincerity (PoSn) consensus method proposed in [54] addresses this imbalance by

allowing even those with minimal computing power to be rewarded through the mining

22

23

process, preventing the dominance of a few large resource owners in the mining process.

By appropriately setting the mining difficulty based on the number of miners and their

mining capacity, PoSn can maintain the desired level of ledger security. Additionally,

by changing the design of the mining task, PoSn can achieve a higher level of security

than other consensus methods and reduce the unnecessary waste of resources that

happens in PoW.

3.1.1 Unfairness in PoW

The mathematical puzzle in PoW is based on finding a hash value with a

certain number of leading zeros, which depends on the difficulty level of the network.

According to [12,56], the number of leading zeros should be at least 32. The difficulty

level is determined by the amount of time it takes to solve this problem and is

calculated using the equation:

D =
T1
T

Here, D represents the difficulty level, T1 represents the target difficulty of 1, and

T represents the current target where targets are 256-bit numbers with at least 32

leading zeros [56]. For example, if the target for difficulty 1 is

2224

and the current target is

1.5× 2220,

then the difficulty level is

24

1.5
=

32

3
.

24

Consider the level of difficulty based on the number of entities involved and the

amount of time needed. In that case, many entities can show high difficulty levels

in an aggregate way, even if each entity is only performing a relatively inexpensive

task. The probability of finding a valid hash value with m leading zeros is inversely

proportional to 2m, assuming that the hash function used in PoW, i.e., SHA-256 [19],

behaves like a random oracle. Therefore, on average, a miner has to try 2m−1 different

inputs to find a hash value with at least m leading zeros. This means that the higher

the difficulty level, the more computational power and energy are required to solve

the PoW puzzle.

According to benchmark results in [57], it has been found that general-purpose

CPUs are about one order of magnitude slower than GPUs and four orders of magnitude

slower than ASICs. Moreover, mobile CPUs such as Cortex-A9 are two orders of

magnitude slower than desktop CPUs. Based on this information, a comparison can

be made between the performance of different hardware types, such as mobile CPUs,

desktop CPUs, GPUs, and ASICs, in terms of hash operations and computation time.

Figure 3.1 shows the expected number of hash operations required to achieve a certain

level of difficulty on different types of machines.

It can be observed that the number of hash operations required is consistent

across all types of machines. Additionally, Figure 3.2 shows the expected computation

time required to achieve the same level of difficulty on different types of machines.

The computation time required varies significantly across different types of machines,

as shown. Based on this, mobile CPUs such as ARM CPUs have no chance of mining

successfully due to their low speed.

25

1000

10000

100000

1e+006

1e+007

1e+008

1e+009

 0 5000 10000 15000 20000 25000

H
as

h
op

er
at

io
ns

 (
M

H
)

Difficulty

Expected number of hash operations per difficulty for different machines in Bitcoin

ARM CPU
CPU
GPU
ASIC

Figure 3.1: Expected number of hash computation per difficulty for different types
of machines

0.01

1

100

10000

1e+006

1e+008

 0 5000 10000 15000 20000 25000

Ti
m

e
(s

)

Difficulty

Expected time per difficulty for different machines in Bitcoin

ARM CPU
CPU
GPU
ASIC

Figure 3.2: Expected time of hash computation per difficulty for different types of
machines

3.1.2 Sincerity

In this study, a new way of looking at the mining process is proposed: Sincerity.

The unit of sincerity, denoted as S, is defined to quantify the extent to which an

entity is willing to allocate its own resources towards computing a hash code with a

26

specific number of leading zero bits. For example, 1S means the sincerity level to

produce a hash code with 1 leading zero bit, and mS means the sincerity level to

produce a hash code with m leading zero bits. Since obtaining a certain number of

leading zeros in a hash function requires an exponentially increasing number of hash

operations, the following properties of S can be derived:

32S

= 21 31Ss

= 22 30Ss

...

= 231 1Ss.

As a generalization, it is observed that

m nSs

= m21 n− 1Ss

...

= m2n−1 1Ss

= (lg(m) + n)S,

and

mS = 2m−1 1Ss

27

where lg(m) is log2(m). The above equations imply that finding one additional leading

zero bit in the hash code requires twice as many hash operations. To successfully mine

a block, at least one miner must achieve the predetermined number of leading zero

bits. The mining will be successful if there is at least one miner with the expected

difficulty level with a certain predetermined number of leading zeros. For miners

who generate hash codes with fewer leading zeros, their level of contribution can be

determined using the sincerity level S, and they can be rewarded accordingly based

on their contribution. Specifically, the ratio of a miner’s S value to the successful

miner’s S value will determine their reward.

The figures depicted in Figure 3.3 and 3.4 illustrate the expected number of

hash operations and computation time for different levels of sincerity across various

machine types such as mobile ARM CPU, desktop CPU, GPU, and ASIC, respectively.

Figure 3.4 demonstrates that different machines can exhibit different levels of sincerity,

i.e., s1 for ARM CPU, s2 for desktop CPU, s3 for GPU, and s4 for ASIC at a given

time t. In contrast to difficulty level, machines can demonstrate significantly different

levels of sincerity by spending the same amount of time. This characteristic can be

utilized to design the PoSn consensus method.

3.1.3 Fairer Rewarding Scheme

The PoSn scheme can promote a fairer reward system that allows miners with

lower computing power to participate and receive rewards. To explain this system,

suppose that the current reward amount is represented by R, and n and u represent

the necessary and sufficient sincerity level to receive a reward, which is determined

28

1e-005

1

100000

1e+010

1e+015

1e+020

1e+025

 0 10 20 30 40 50 60 70 80 90 100

H
as

h
op

er
at

io
ns

 (
M

H
)

Sincerity

Expected number of hash operations per sincerity for different machines

ARM CPU
CPU
GPU
ASIC

Figure 3.3: Expected number of hash computation per sincerity for different types
of machines

1e-010

1e-005

1

100000

1e+010

1e+015

1e+020

 0 10 20 30 40 50 60 70 80 90 100

t

s1 s2 s3 s4

Ti
m

e
(s

)

Sincerity

Expected time per sincerity for different machines

ARM CPU
CPU
GPU
ASIC

Figure 3.4: Expected time of hash computation per sincerity for different types of
machines

by the number of leading zeros in the hash code. Additionally, consider there are

three miners, A, B, and C, with sincerity levels sA, sB, sC where sA, sB, sC ≥ nS and

sA ≥ uS but sB, sC < uS. This implies that all three miners are eligible for a reward,

but only miner A is successful in generating a hash code with at least u leading zeros.

29

In the PoW scheme, miner A would receive a reward, while miners B and C would not

receive any rewards due to their insufficient resources. However, in the PoSn scheme,

miners B and C would also get some reward proportional to their sincerity levels, as

follows:

R · 2
sB−1

2u−1
= R · 2sB−u

and

R · 2
sC−1

2u−1
= R · 2sC−u,

respectively. Miner A would get the remaining reward after subtracting the rewards

of miners B and C, as follows:

R · (1− (2sB−u + 2sC−u)).

Now, consider another scenario. Using Figure 3.4, if the sincerity level of

(2s1−1 + 2s2−1 + 2s3−1 + 2s4−1) 1Ss

= (lg(2s1−1 + 2s2−1 + 2s3−1 + 2s4−1) + 1)S

has been achieved in an aggregate way using time t and which is larger than or equal

to u, it can be concluded that the mining operation has succeeded. The user with

ARM CPU will get the reward of

R · 2s1−u,

the user with CPU will get the reward of

R · 2s2−u,

30

the user with GPU will get the reward of

R · 2s3−u,

and the user with ASIC will get the reward of

R · (1− 2s1−u − 2s2−u − 2s3−u).

This way, the PoSn scheme incentivizes miners to participate in mining even if they

have the low computing power and rewards them according to their contribution.

3.1.4 Comparison of Different Consensus Mechanism

The comparison of various consensus protocols has been briefly summarized

in TABLE 3.1 based on their advantages and disadvantages. The proposed PoSn

consensus scheme has the benefit of allowing a more significant number of miners to

participate, even those with relatively small computing power. This can be achieved by

reducing the sincerity/difficulty level required for the miners to post their mining code

so that smaller miners can have a chance to contribute. This enhances participation

and prevents the domination of a few powerful miners who may act maliciously or

compromise the security of the blockchain ledger. Safeguards against a 51% attack

can be implemented by enforcing a rule where any miner can submit a mining code

with (s− 1)S level when sS level is required.

One disadvantage of the proposed scheme is that extensive resources are

still required for sincere work, although this can be regulated by adjusting the

sincerity/difficulty requirement. In fact, the proposed scheme deviates from the

conventional 10 minutes/block rule observed in BitCoin. Instead, it focuses on

ensuring security through a large number of participants, eliminating the need for an

31

Table 3.1: Comparison of different consensus mechanism

Consensus Advantage Disadvantage

PoW Any node can theoretically par-
ticipate because of it’s simplic-
ity

Extensive energy required & vul-

nerable to 51% attack

PoS Energy efficient & Eco-friendly In order to participate in the net-
work, previous resource required
& vulnerable to nothing at stake

attack

PoA Mining open for any miner &
Reduce hyperinflation

Extensive resource required & vul-
nerable to nothing at stake attack

PoT Resource intensive & Eco-
friendly

Trusting third party execution

environment

PoSn Any miner can practically par-
ticipate & can even get re-
warded & Can be configured
to prevent 51% attack

More energy required than PoS,
but can be configured to lower

energy consumption

excessively high sincerity/difficulty level. By fostering a robust and diverse network of

miners, the scheme achieves a distributed consensus mechanism that enhances security

while maintaining a more flexible block generation time.

3.2 Blockchain Based Storage Architecture

One of the challenges of data management is the growing volume of data that

requires reliable and secure storage solutions. Blockchain systems offer a promising

alternative to traditional cloud storage platforms, as they do not rely on any central

authority and guarantee the properties of decentralization, immutability, and integrity

of the stored data. However, most existing Blockchain consensus mechanisms are

designed for transactional data only and may not be suitable for other data types. A

32

novel Blockchain consensus mechanism is presented in [55], which is suitable for data

storage and validation and can be scaled to mobile devices. Incorporating a two-step

validation process with these devices ensures that the proposed consensus mechanism

is more secure and cost-effective than centralized cloud-based storage systems. The

contribution of this work can be summarized as follows:

• A consensus mechanism framework is proposed for Blockchain-based distributed

storage, which includes mobile devices as validators.

• A game-theoretic analysis is conducted to evaluate the consensus mechanism by

modeling the strategies and outcomes of the validators under different scenarios,

using Nash Equilibrium to measure the system’s stability.

• A queuing-theoretic analysis is performed to study the expected congestion

within the network, including metrics such as the expected waiting time and the

number of participants. This will allow participants to detect unusual activities

in the network.

3.2.1 Proposed Scheme

Entities

The proposed consensus mechanism involves two types of entities: block-

warehouses, which store the chain of blocks, and users who need access to the

chain. Within this mechanism, there are three main roles: Selectors, Validators,

and Invalidators. Selectors are entities with high storage capabilities, while validators

can be any mobile or personal device that can connect to the Blockchain network.

Invalidators are a subset of validators who can detect and report any errors or

misbehaviors in the validation process. To ensure the accountability of each selector,

33

a counterpart of the selector in the consensus mechanism is introduced. These

counterparts are called Positive Selectors and Negative Selectors, respectively.

Validator

Selectors (Positive and Negative)

Figure 3.5: Diagram of role interactions

Choosing Positive Selectors and Negative Selectors

A new method of selecting positive and negative selectors is introduced in the

proposed scheme. The validations of each block in the Blockchain system are split into

several parts. A generic way to define the validation proof of a block part is to use the

ID of the latest block that is connected to that part. The connection can be defined for

different applications; for example, for financial transaction-based blocks, a block and

a section containing the same transaction entities can be connected. The validation

work is low in computation and only requires verifying the proof. Since there may

be multiple mining attempts and forking is not allowed, a (temporary) central entity

is relied upon to collect and choose one validation work among them. The payment

34

or compensation for the validator can be designed according to the applications. For

instance, a possible approach is to have the rewarded miner pay the validator.

The main idea of this selector scheme is to let each block-warehouse take turns

to provide selector service for each block and to ensure that this rotation is as fair as

possible. Achieving a completely fair rotation without the involvement of a central

server would be challenging. Therefore, the goal is to achieve a rotation that is fair

enough or probabilistically fair. To accomplish this, the scheme requires every block-

warehouse to announce and register itself with the other block-warehouses, ensuring

that every block-warehouse has the same list of participating block-warehouses. Each

block-warehouse is then expected to locate the same selector based on the list and the

rule.

A possible way to design the selector rotation rule is to base it on the block-

warehouses’ IDs, which are some public and verifiable information such as the miner’s

public key. The rotation of the selector service can start with the block-warehouse

that has the lowest ID for the first block and then select the following lowest ID

for the second block, and so on. However, this approach may not always ensure a

fair selection of selectors, as it could perpetually avoid certain block-warehouses as

selectors. For example, if new block-warehouses with a lower ID than the current

selector join after each block verification, any block-warehouse with a higher ID than

the current selector will be skipped forever. This could become a significant issue

depending on the fee/compensation scheme for the selectors.

Block-related information, particularly the block’s hash code, is utilized to

prevent unfair selector choices and maintain a probabilistically fair rotation. This is

35

because the hash code of a block is pseudorandom, which means that each possible

hash code is almost equally likely. The two block-warehouses with the IDs that

are closest to the block-related information will be chosen as the selectors for the

block. Since this type of choice depends on block-related information, fairness can be

compromised if the new block announcer can manipulate this information. However,

if the block-related information, such as the hash code, is appropriately processed, it

can be challenging to manipulate it computationally and disrupt fairness. Thus, this

approach achieves a fair rotation with a high probability.

Each block in the proposed scheme has two selectors chosen: a positive selector

and a negative selector. The positive selector’s main task is to divide the block into

sections and collect proofs of sectional validation, from which one will be chosen for

reward. On the other hand, the negative selector’s primary responsibility is to collect

proof of invalidation, which can point out any wrongdoing by positive selectors or

validators and announce the finalization of the block otherwise. It’s important to note

that the two selectors can invalidate each other’s previous work.

Block Generation Process

Once a positive selector is chosen through the process described in 3.2.1, it will

begin working on two tasks sequentially: 1) validating the previous negative selector’s

work and 2) dividing the block into non-overlapping sections. During the validation

process, if an invalidator submits a report with proper proof, the positive selector

will penalize the negative selector’s reward and redistribute it to the invalidator and

itself. The positive selector will finalize the previous block by signing it with its public

36

ID, including information such as the penalty of the negative selectors and reward

for the invalidators. Then it will announce the sections for the current block to the

network by signing with its public ID. Validators may choose any section for validation

and sign their validation proof with their public ID, which the positive selector also

validates. The positive selector selects the first correct validator whose submission

matches its validation proof and announces the winners for each section by signing

with its public ID.

If there are no errors reported by the invalidators, the negative selector records

the block by signing it and including all relevant information, such as the positive

selector, negative selector, winners, and rewards for each section. If there are errors

in the validation process, invalidators can notify the negative selectors with proper

proof to bring themselves into the block creation process. Examples of wrongdoings

in validation include intentionally or unintentionally choosing the wrong validator or

choosing a validator whose submission time is significantly later than other legitimate

validators. In the case of wrongdoing, the negative selector can deduct the reward

from the entities involved and redistribute it to the positive selector, winner validators,

and the negative selector. Once all information is recorded in the block header, the

negative selector waits for the next block’s positive selector to finalize the block.

The process of generating a block can be divided into two stages: 1) Announce-

ment and 2) Sectional Validation. The main aspects of the block generation process,

along with three different scenarios, have been illustrated in the workflow diagram

shown in Figure 3.6. These scenarios include: 1) All the entities are honest, 2) Positive

selector or Validator is dishonest, and 3) Negative selector or Invalidator is dishonest.

37

Positive

Seletcor
Network

Positive selector will be determined Negative selector will be determined

Finalize previous block

Announce sectional validations Announcement

Validator submits the validation proof

Report the invalidation with proof

Choose right validator Every entity is honest

Dishonest validator submits the validation proof

Selects wrong validation
Report the invalidation with proof

Positive Selector & Validator dishonest

Scenerio 2

Scenerio 1

Scenerio 3

Wrong invalidation proof

Wrong invalidation

Discard the wrong report Negative Selector & Invalidator dishonest

Section Validation

Current Block Previous Block

Selector

NegativeValidator/

Invalidator

Figure 3.6: Workflow of section announcement and section validation

In the third scenario, any erroneous invalidation recorded by the negative

selector will be addressed by the next block’s positive selector. It is possible for all

entities involved to be dishonest, but the likelihood of such a scenario occurring is low.

We examine this scenario using the concept of Nash Equilibrium in Section 3.2.2.

3.2.2 Analysis

Game Theoretic Analysis

The proposed consensus approach operates under the assumption that entities

are rational decision-makers, meaning they will strive for the maximum outcome

for their strategies in their interactions regarding consensus while considering the

strategies of other entities. This system can be modeled and analyzed using Game

38

theory tools, and the behaviors of each entity can be predicted. One of the most

important and influential tools is Nash Equilibrium [58], which defines the optimal

outcome of an interaction where no participants have the incentive to change their

strategies. According to Osborne and Rubinstein [59], this interaction process can be

categorized as games, and the entities are players.

The Nash equilibrium has been calculated to analyze the optimal condition

of the consensus approach employed. Two validation games were formulated to

calculate the Nash equilibrium, considering different behavioral situations (Honest

and Dishonest). The payoff of each entity in the system was predicted as part of the

calculation process. Dishonest behavior can be either intended or unintended. The

validation game can be either “At least one honest selector is present” or “No honest

selector is present”. For the sake of simplicity, the constructed games were focused

on only one section of a block. However, these games are valid for all sections in a

block without logical difficulty. The payoff matrices for the two games, representing

the strategies of the validators and selectors’ behavior, were presented in Table 3.2

and Table 3.3, respectively.

Table 3.2: When at least one honest selector is present in the validation process

Entities
Behavior

Positive Selector & Negative Selector
00 01 10 11

Validators
0 5 500 500 5 500 -10000 (10000+5)/2 -10000 (10000+5)/2 5 -10000 -10000
1 -100 500 600 -100 500 -10000 -100 -10000 10000+(500+100) -100 -10000 -10000

In these tables, the columns denote the selectors’ strategies, while the rows

represent the validators’ strategies. The table’s data cell represents the payoff for the

39

validators, positive selectors, and negative selectors for each combination of strategies

among the selectors and validators. Honest behavior is represented as “0”, and

dishonest behavior is represented as “1”.

Table 3.3: When there is no honest selector is present in the validation process

Entities
Behavior

Positive Selector & Negative Selector
00 01 10 11

Validators
0 5 500 500 0 -10000 (500+10000)/x (5+1000)/2 -10000 (5+1000)/2 0 500 500
1 -100 500 500+100 5 -10000 (500+1000)/(x+1) -100 -10000 500+(100+10000) -100 500 (500+100)/x

The Nash equilibrium was calculated using Gambit [60], an open-source

collection of tools widely used in game theory. The global Newton method [61]

was employed to perform the Nash equilibrium calculations. The two games discussed

earlier were formulated and implemented, assuming certain payoff values. The highest

payoff for validators was set to 100, while the highest payoff for selectors was set

to 10, 000. For honest validators, the payoffs were assumed to be 5, 500, and 500,

respectively. On the other hand, the payoffs (penalties) for dishonest validators,

positive selectors, and negative selectors were assumed to be −100, −10, 000, and

−10, 000, respectively.

One Honest Selector is Present in Validation

In this game, at least one honest selector is present, and the honest selector has

the ability to identify the dishonest behavior of the entities. As a result, the dishonest

entities will face a penalty, and their forfeited payoff will be distributed among the

other honest entities. The Nash equilibrium analysis shows that the probability of all

entities behaving honestly is 1, while the probability of all entities behaving dishonestly

is 0.

40

No Honest Selector is Present in Validation

In this game, the dishonest entities will benefit from the lack of a honest

selector, as they will get the payoff that the honest entities lose. In the payoff matrix,

‘x’ represents the number of the colluding selectors. The number of colluding selectors

and the “penalty ratio,” which increases the base penalties, were systematically varied

to explore their impact on the Nash equilibrium. Notably, it was observed that as

the number of colluding selectors exceeded a certain threshold, the Nash equilibrium

transitioned towards a probability of 1 for honest entities and 0 for dishonest entities.

This finding suggests that the presence of a critical mass of colluding selectors can

significantly affect the equilibrium behavior of the system, favoring the dominance of

honest participants. Figure 3.7 and Figure 3.8 show two 3D plots of the Nash profile

for positive selectors with penalty ratios of 2 and 5, respectively. The axes are X, Y ,

Z for the Nash probabilities of honest behavior, dishonest behavior, and the number

of colluding selectors. Figure 3.9 shows a linear relationship between the number of

colluders and the number of selectors, which also indicates the minimum number of

dishonest selectors.

3.2.3 Queuing Theoretic Analysis

A first-come-first-serve queue model was employed to analyze the expected

waiting time experienced by validators in the system. The model assumes that

validators can submit their validation work for any section without restrictions and

follow a Poisson process with an arrival rate denoted by λ. Validation checks are

performed by selectors at a service rate denoted by µ. Both the arrival and service times

41

Figure 3.7: Nash profile for the positive selector for penalty ratio 2

Figure 3.8: Nash profile for the positive selector for penalty ratio 5

are assumed to follow an exponential distribution. This queueing model corresponds

to the M/M/1 queue model, a well-known concept in queueing theory. The queue

model and the flow diagram for the M/M/1 queue are illustrated in Figure 3.10.

Consider the probability of the system being in state n, i.e., having n validators

in the queue, by pn. The following relation can be derived from the flow diagram:

λpn = µpn+1 ⇒ pn+1 =
λ

µ
pn

42

Figure 3.9: Number of colluder vs Penalty ratio

Let ρ = λ
µ
and note that the sum of all state probabilities must be equal to 1.

1 =
∞∑
0

pi =
∞∑
0

ρip0 =
p0

1− ρ
⇒ p0 = 1− ρ.

By applying Little’s theorem [63], several useful characteristics of the system can be

obtained. The expected number of validators in the system, E[N], is given by

E[N] =
∞∑
0

npn =
∞∑
0

n(1− ρ)pn = (1− ρ)
∞∑
0

npn =
ρ

1− ρ

The expected time in the queue for a validator, E[T], can be computed using Little’s

theorem as well,

E[N] = λE[T]⇒ E[T] =
ρ

λ(1− ρ)
=

1

µ− λ

The total expected time in the queue system T for a validator consists of the expected

time in the queue Tq and the expected validation time (service time).

E[T] = E[Tq] +
1

µ
⇒ E[Tq] =

1

µ− λ
− 1

µ
=

ρ

µ(1− ρ)

43

λ µ

Validators queue

Selector

(a) M/M/1 queue model

0 1 2 n− 1

λ λ λ λ λ

µ µ µ µ µ

n

(b) Flow diagram for M/M/1 queue model

Figure 3.10: M/M/1 queue

Similarly, the expected number of validators in the queue Nq is given by

E[Nq] =
ρ2

1− ρ
.

3.2.4 Conclusion

In this study, a new consensus mechanism for Blockchain systems is presented

to address the challenges of centralization and security. The centralization issue arises

from the dominance of a few powerful entities in the mining or validation process,

leading to various attacks like 51% attack, DDoS attack, DNS attack, consensus delay,

and selfish mining. Security concerns focus on ensuring the integrity and validity

of transactions and blocks while resisting such attacks. The proposed consensus

mechanism introduces two novel features: probabilistic fair rotation of selectors and

block segmentation. The former ensures that the selection of validators is random and

fair, preventing any entity from gaining undue influence over the network. The latter

allows each block to be divided into multiple sections, which increases user participation

44

and reduces the computational and storage requirements for validators. Additionally,

multiple validations per block enhance the overall security of the Blockchain system.

The applicability of the consensus mechanism to different applications and

its support for various reward mechanisms are discussed. Game theory models

demonstrate that the proposed mechanism incentivizes rational entities to behave

honestly and cooperate, discouraging attacks and misbehavior. The use of queuing

theory allows for performance analysis, particularly in terms of network congestion

and waiting delay, providing insights into the mechanism’s efficiency.

CHAPTER 4

SUPERSINGULAR ISOGENY BASED HASH FUNCTION

This chapter contains content that was previously published in:

M. U. Zaman, A. Hutchinson, and M. Min, “Implementation Aspects of

Supersingular Isogeny-Based Cryptographic Hash Function,” in Wireless Internet:

15th EAI International Conference, WiCON 2022, Virtual Event, November 2022,

Proceedings, 2023, pp. 14–27.7 [47].

4.1 Implementation Aspects of Supersingular Isogeny-Based
Cryptographic Hash Function

This section discusses the practical aspects of implementing the compact

version of the CGL hash function using different types of elliptic curves (Weierstrass,

Montgomery, and Legendre). The study demonstrates that the utilization of the

distinct features of each form of the elliptic curve enables the elimination of certain

redundant computations in the original proposals of the CGL hash function. Addi-

tionally, experiments were conducted with the implemented algorithms to compare

their running time and total number of collisions.

45

46

4.1.1 Compact CGL Hash Algorithms in Short Weierstrass Form

An elliptic curve E over a prime field Fp2 with p > 3 can be transformed into

a short Weierstrass form,

E : y2 = x3 + αx+ β,

where (α, β) ∈ Fp2 and 4α3 + 27β2 ̸= 0. This condition ensures that the curve has

three distinct roots. The j-invariant of the elliptic curve E can be expressed as,

j(E) = 1728(4α3)(4α3 + 27β2)−1.

In this dissertation, the division operation within the field is represented as the product

of the numerator and the multiplicative inverse of the denominator. For instance, if c

and d are two elements in the field Fp2 , the division of c by d is denoted as cd−1.

2-Isogenies

Let γ be a root of x3 + αx2 + β. By performing algebraic polynomial division

with (x− γ), one can obtain (x2 + γx+ (α + γ2). Therefore, the elliptic curve E can

be expressed as,

E : y2 = (x− γ)(x2 + γx+ (α + γ2)).

Hence, the three torsion points of order 2 are (γ, 0), ((−γ ±
√
−4α− 3γ2)2−1, 0).

According to [64, Theorem 6.13], if (x0, 0) is a torsion point of order 2, applying a

2-isogeny with ker(ϕ) = ⟨(x0, 0)⟩ produces the following mapping:

ϕ : E → Ẽ : y2 = x3 + α′x+ β′

(x, y) 7→
(
(x2 − x0x+ t)(x− x0)−1, ((x− x0)2 − t)(x− x0)−2y

)
,

47

where, t = 3x20 + α, α′ = α− 5t, w = x0t, and β
′ = β − 7w.

CGL Hash Algorithm for Short Weierstrass Form

The algorithm 1 takes four input parameters: α, β, γ over the field Fp2 , and

an n-bit message M = (b1, b2, · · · , bn). Here, α and β define a supersingular elliptic

curve E in Weierstrass form y2 = x3 + αx + β over Fp2 , and γ is one of the roots

of the equation x3 + αx+ β. In steps 2 and 3 of Algorithm 1, the x-coordinates of

the other two torsion points (x0, x1) are computed. Steps 4 to 7 establish a uniform

convention for determining x0 and x1 in order to navigate the next steps in the graph.

The convention dictates that x0 is chosen as the maximum value from step 3 for bit 1,

and as the minimum value for bit 0. Similarly, x1 is chosen as the opposite value for

each bit. Steps 9 and 10 utilize V’elu’s formula to calculate the Weierstrass parameters

α and β of the next isogenous elliptic curve. In step 11, the x-coordinate of the dual

isogeny or backtracking point in the new isogenous curve is computed. The output of

the algorithm, obtained in step 13, is the j-invariant of the last elliptic curve.

Algorithm 1 CGL hashing using Weierstrass Curve

Input: α, β, γ,M
Output: j-invariant
1: for bit in M do
2: δ ←

√
−4α− 3γ2

3: (x0, x1)← ((−γ + δ)2−1, (−γ − δ)2−1)
4: if bit← 1 then
5: (x0, x1)← max(x0, x1),min(x0, x1)
6: else {bit← 0}
7: (x0, x1)← min(x0, x1),max(x0, x1)
8: end if
9: t← 3x20 + α, w ← x0t
10: α← α− 5t, β ← β − 7w
11: γ ← (x21 − x0x1 + t)(x1 − x0)−1

12: end for
13: return j-invariant ← 1728(4α3)(4α3 + 27β2)−1

48

4.1.2 Compact CGL Hash algorithms in Montgomery Form

The Montgomery form of an elliptic curve over the field Fp2 can be represented

by the equation:

E(A,B) : By
2 = x3 + Ax2 + x = x(x2 + Ax+ 1),

where A and B are elements of Fp2 and B(A2 − 4) ̸= 0. The parameter A primarily

determines the geometry of the curve E(A,B). The j-invariant of the curve can be

calculated as:

j(E(A,B)) = 256(A2 − 3)3(A2 − 4)−1.

2 Isogenies

From the curve equation E(A,B), it can be shown that Q = E(0, 0) be a

K-rational point of order 2. If P = (xP , 0) is another K-rational point of order

2, then x2P + AxP + 1 = 0. Therefore, the other two rational points of order 2

are ((−A ±
√
A2 − 4)2−1, 0). According to [65, §4.2], applying a 2-isogeny with

ker(ϕ) = ⟨P ⟩ generates the following mapping:

ϕ : E → Ẽ : by2 = x3 + ax2 + x = x(x2 + ax+ 1)

(x, y) 7→ (g(x), yg′(x)),

with b = xPB, a = 2(1−2xP)2 = 2−(−A±
√
A2 − 4)2, and g(x) = x(xPx−1)(x−xP)−1.

Moreover, [65, Corollary 1] shows that the kernel of the dual of ϕ is ⟨(0, 0)⟩. Hence,

ker(ϕ̂) = ⟨(0, 0)⟩. On the other hand, the authors in [8, Eqn. (18) & (19)] outline the

2-isogeny for ker(ϕ) = ⟨(0, 0)⟩ as:

ϕ : E → F : By2 = x3 + (A+ 6)x2 + 4(2 + A)x

49

(x, y) 7→
(
(x− 1)2x−1, y(1− x−2)

)
.

The authors in [65, Remark 6] describe an isomorphism of F with the following

mapping through considering, As =
√
A2 − 4:

ψ : F → G : BA−1
s y2 = x3 − 2AA−1

s x2 + x

(x, y) 7→
(
(x+ A+ 2)A−1

s , yA−1
s

)
.

By applying a 2-isogeny with the kernel ⟨(0, 0)⟩ and performing a simple algebraic

computation on the coefficients of x2, it can be shown that the dual of ψ is also ⟨(0, 0)⟩.

Hence, ker(ψ̂) = ⟨(0, 0)⟩.

CGL Hash algorithm for Montgomery form

The algorithm 2 takes two input parameters: A ∈ Fp2 , which defines a

supersingular elliptic curve in Montgomery form as y2 = x3 + Ax2 + x, and an

n-bit message M (b1, b2, · · · , bn). In this algorithm, the dual of the kernel is always

⟨(0, 0)⟩, so the backtracking point is (0, 0). Therefore, there is no need to calculate

the backtracking point, and the other two torsion points can be assigned for bit 1 and

0 based on a uniform convention. From step 2 to 8, a convention has been established

to choose the next isogenous curve. The output of the hash function will be the

j-invariant of the last isogenous curve.

4.1.3 Compact CGL Hash Algorithms in Legendre Form

The Legendre form is an interesting representation of an elliptic curve. If

λ ∈ Fp2 and λ ̸= 0, 1, then the elliptic curve E in Legendre form can be expressed as

50

Algorithm 2 CGL hashing algorithm using Montgomery Curve

Input: A,B,M
Output: j-invariant
1: for bit in M do
2: C ←

√
A2 − 4

3: A0 ← 2A2 − 4 + AC
4: A1 ← 2A2 − 4− AC
5: if bit← 1 then
6: A← 2−max(A0, A1)
7: else {bit← 0}
8: A← 2−min(A0, A1)
9: end if
10: end for
11: return j-invariant ← 256(A2 − 3)3(A2 − 4)−1

follows:

Eλ : y2 = x(x− 1)(x− λ).

Here, Legendre coefficient, λ for E is not unique. In fact each of

λ, λ−1, (1− λ), (1− λ)−1, λ(λ− 1)−1, (λ− 1)λ−1

yields an Isomorphic E curve. The j-invariant of Eλ is given by:

j(Eλ) = 28(λ2 − λ+ 1)3λ−2(λ− 1)−2.

Most supersingular elliptic curves will have three 2-isogenies. Therefore, the six

possible Legendre coefficients that yield the same j-invariant can be grouped into

three pairs, where each pair is directly related to one of the three 2-isogenies.

2 Isogenies

The three 2-torsion points (0, 0), (1, 0), (λ, 0) are readily available from the

elliptic curve expression Eλ. From [66, Theorem 4 & 5], it can be shown that applying

51

a 2-isogeny when ker(ϕ) ̸= (λ, 0) produces the following mapping:

ϕ : E → Ẽ : y2 = x(x− 1)(x− λ′).

The relationship between λ and λ′ can be expressed as follows.

λ =



(λs + 1)2(4λs)
−1 = (λ+ 1 + 2λs)(4λs)

−1 if ker(ϕ) = ⟨(0, 0)⟩

−(λt − 1)2(4λt)
−1 = (λ− 2 + 2λt)(4λt)

−1 if ker(ϕ) = ⟨(1, 0)⟩

(λs + λu)
2(4λsλu)

−1 = (2λ− 1 + 2λsλt)(4λsλu)
−1 if ker(ϕ) = ⟨(λ, 0)⟩

where, λs =
√
λ, λt =

√
1− λ, and λu =

√
λ− 1.

CGL Hash Algorithm for Legendre Form

The algorithm 3 takes two input parameters: the Legendre parameter λ ∈ Fp2 ,

which defines the supersingular elliptic curve as y2 = x(x − 1)(x − λ), and the

n-bit message M (b1, b2, · · · , bn). Similar to the Montgomery form algorithm, the

backtracking point is fixed at (λ, 0). In steps 2 to 5 of the algorithm, the kernel point

is determined based on the value of the current bit. For bit 1, the kernel point is

set to (1, 0), while for bit 0, the kernel point is set to (0, 0). The output of the hash

function algorithm will be the j-invariant of the last isogenous curve.

4.1.4 Yoshida et al. Proposed Method for Computing CGL Hash

Yoshida et al. [50, §5] introduced two efficient techniques for computing CGL

hashes specifically designed for the Weierstrass form of supersingular elliptic curves.

These methods are based on their proposed Theorem [50, Theorem 1], which establishes

52

Algorithm 3 CGL hashing algorithm using Legendre Curve

Input: λ,M
Output: j-invariant
1: for bit in M do
2: if bit← 1 then
3: λ← (λ+ 1 + 2

√
λ)(4
√
λ)−1

4: else {bit← 0}
5: λ← (λ− 2 + 2

√
1− λ)(4

√
1− λ)−1

6: end if
7: end for
8: return j-invariant ← 28(λ2 − λ+ 1)3λ−2(λ− 1)−2

a connection between the current and subsequent curve parameters utilizing a non-

backtracking torsion point. Although both methods offer similar computational costs

in theory, the first method as suggested was implemented.

4.1.5 Result and Discussion

Algorithmic Cost Comparison

The computational cost of the three algorithms described in section 4.1.1 is

compared in Tables 4.1 and 4.2. The tables are based on the common assumption

that I = 100M, S = 0.67M, and SR = (0.67 log p + 100)M, where I, S, SR, and M

denote Inversion, Squaring, Square root, and Multiplication, respectively.

The computational cost measure for computing 2-isogeny sequences for n-bit

input strings and finding the j-invariant of the final isogenous curve. The comparison

shows that the algorithm for Montgomery and Legendre form has a lower computational

cost than the algorithm for the Weierstrass form. A similar outcome is also verified

by the simulation result from applying the algorithm discussed afterwards.

53

Table 4.1: CGL Hash operation counts for different algorithms

Algorithm Curve Model
Counts

Multiplication Square Square root Inversion

1 Weierstrass 4n+ 1 3n+ 2 n n+ 1
2 Montgomery 2n+ 1 n+ 1 n 1
3 Legendre 2 3 n n+ 1

Table 4.2: CGL Hash costs comparison for different algorithms

Algorithm Curve Model Costs in M

1 Weierstrass (206 + 0.67 log p)n + 102.33
2 Montgomery (102.67 + 0.67 log p)n + 101.67
3 Legendre (200 + 0.67 log p)n + 104

Simulation Result

A Python script was developed using SageMath [67] to compare the performance

of algorithms 1, 2, and 3 with the algorithm proposed in [50, §5.3], which was also

implemented. The simulations were conducted on an Intel® CoreTM i5-7500 CPU (@

3.40GHz x 4) running Ubuntu 18.04.6 LTS. The running time and the total number

of collisions were used as the comparison criteria, as these properties are fundamental

to the hash function in terms of low computational time and collision avoidance.

The running time was measured by calculating the difference between the start and

end times of each algorithm for 128-bit input strings, while the total number of

collisions represented the count of input strings mapping to the same j-invariant. The

evaluation was performed on 220 unique input strings over different prime fields, and

the arithmetic mean of the running times was used to measure central tendency. The

starting curve for all algorithms was based on the SIKE proposed elliptic curve or its

54

isomorphic curve over Fp2 . Specifically, the Weierstrass, Montgomery, and Legendre

forms used the starting elliptic curves y2 = x3 − 11x + 14, y2 = x3 + 6x2 + x, and

y2 = x(x− 1)(x− 17 + 12
√
2) over Fp2 , respectively.

The simulation results for all four algorithms are presented in Figure 4.1. The

algorithm proposed in [50, §5.3] is labeled as Yoshida, while the other three algorithms

are named after their respective curves. In Figure 4.1b, the prime numbers 224 + 43,

228 + 3, 232 + 15, 236 + 31, 240 + 15, 244 + 7, and 248 + 75 are denoted as P1, P2, P3,

P4, P5, P6, and P7, respectively. The computational time, as shown in Figure 4.1a,

increases with the size of the prime field, and algorithms 2 and 3 demonstrate higher

efficiency compared to the other two algorithms. Figure 4.1b depicts that the total

number of collisions decreases exponentially as the prime field sizes increase.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Prime Field Size p 1e19

0.02

0.04

0.06

0.08

0.10

0.12

C
om

pu
ta

tio
na

l T
im

e(
s)

Weierstrass
Yoshida
Montgomery
Legendre

(a) Computational time

P1 P2 P3 P4 P5 P6 P7
Prime Field Size p

100

101

102

103

104

105

To
ta

l n
um

be
r

of
 C

ol
lis

io
ns

Weierstrass
Yoshida
Montgomery
Legendre

(b) Total number of collisions

Figure 4.1: Comparison of average computation time and total number of collisions
for 220 number of 128 input bit strings over different size of finite field Fp2 .

Another experiment was conducted to analyze how the number of collisions

varies with the length of the input bit string for different implemented algorithms. A

collision occurs when two distinct input bit strings produce the same output elliptic

55

curve. In this experiment, a prime field of size p was chosen, approximately p ≈ 221,

and the number of collisions was measured for all possible input bit strings up to a

length of 18. Figure 4.2 illustrates that the number of collisions exhibits exponential

growth as the input bit string length increases.

10 11 12 13 14 15 16 17 18
Length of input bit string

101

102

103

104

105

To
ta

l n
um

be
r

of
 C

ol
lis

io
ns

Weierstrass
Yoshida
Montgomery
Legendre

Figure 4.2: Total number of collisions for different length of input bit strings

It is worth noting that the curves in Montgomery form show a faster growth

rate of collisions, which necessitates further analysis using different choices of elliptic

curves and prime fields. However, it is evident that such behavior is undesirable for a

cryptographic hash function. The results of this experiment aided in determining the

appropriate size of the prime field for the design of a secure hash function.

4.1.6 Conclusion

In this work, four compact variants of the CGL hash function, based on 2-isogeny

sequences on different forms of elliptic curves, have been presented. The performance

of these variants has been compared in terms of computation time and collision rates.

It has been observed that the variants utilizing Montgomery and Legendre forms

56

exhibit faster computation times compared to the original CGL hash function. This

improvement can be attributed to the efficient computation of backtracking isogenies

on these particular forms, which was a major bottleneck in the original CGL hash

function. However, it has also been noted that the variant employing the Legendre

form has higher collision rates compared to the variant using the Montgomery form,

although still lower than the other two variants. A conjecture has been made that

this disparity in collision rates might be influenced by the presence of short cycles

in the 2-isogeny sequences on Legendre form curves. Further investigation of this

phenomenon is planned, along with the exploration of potential solutions.

4.2 Supersingular Isogeny-Based Single Compression Hash Function

In this section, a novel single compression cryptographic hash function is

proposed, which is based on traversal in the supersingular isogeny (2-isogeny) graph

and point mapping under the isogeny. The proposed function stands out from existing

supersingular isogeny-based (SI) hash functions by outputting the X-abscissa of a

point on a supersingular elliptic curve without revealing the j-invariant of the traversed

curve. This unique feature enhances the security of the hash function as it introduces

two challenging problems for attackers: finding the curve from its X-coordinate and

solving the supersingular isogeny problem. As a result, the proposed hash function

offers improved preimage resistance. The collision-free property of the proposed hash

function is ensured by the inherent randomness of mapping two different points (or

isogenies) to the same point through an isogeny. Moreover, the compression function

of the hash function processes bits from multiple blocks of the message in a single

57

step, providing it with a computational complexity advantage over other SI hash

functions. Additionally, the compression function organically modifies the message to

enhance resilience against parallelization attempts. The computational complexity

of the proposed hash function is analyzed and compared with that of the CGL and

CGL-like hash functions. Furthermore, a comprehensive collision test is conducted,

considering different prime fields.

4.2.1 Proposed Single Compression Hash Algorithm

In this section, the details of a proposed single compression hash algorithm

based on the supersingular isogeny graph Gl where l = 2 are presented. The graph

G2 is defined by fixing a large prime p as 2nf − 1, where f = 3e35e57e7 . The values of

e3, e5, and e7 are chosen such that 3e35e57e7 − 2n > 0. Additionally, the congruence

p ≡ 3 mod 4 is ensured to irreducible polynomial of the field is x2 + 1. Hence, the

order of the curve is (p+ 1)2 = (2nf)2. One of the distinctive features of the proposed

function is that it does not require sequential compressions for multiple blocks of

the input message. Instead, the message is divided into different blocks, and each

block is processed with a single application of the compression function. Another

significant property of the proposed hash function is the organic modification of the

message during the function processing. This characteristic ensures that even if an

attacker possesses both the input message and its hash, it remains computationally

infeasible for them to make shortcuts or gain computational advantages. Thus, the

security of the message is preserved even if an attacker only obtains a portion of it.

Similar to CGL, the proposed hash function traverses the isogeny graph starting from

58

a fixed starting curve E ∈ G2. Along with the starting curve E, a unique starting

point P ∈ E is computed for each message, with the point’s order being 3e35e57e7 .

Backtracking is not allowed in the proposed function, as a result, two isogenies to

follow from each elliptic curve. The path to follow is determined based on a uniform

convention mapping each bit, 0 or 1, to one of the two non-backtracking isogenies from

each curve. The starting point is mapped through the isogeny to the next isogenous

elliptic curve, i.e., if ϕ : E → Ẽ, then P ∈ E is mapped to Ẽ as ϕ(P). The order of

the mapped point is preserved throughout the function’s processing, as the order of

the point, 3e35e57e7 , is coprime to the order, 2, of the isogeny. Each of the following

bits determines the next isogeny dependent on both the current block of the message

and the computed image point. As the message is being organically modified using the

image point while processing the function, no part of the function is parallelizable. The

last mapped point of the function is the output of the hash function. The proposed

hash algorithm can be divided into two parts: preprocessing and hash function.

Preprocessing

The preprocessing part is responsible for generating a unique starting point

from the initial curve based on the input message. It is computed only once in the

whole hash computation, and the cost associated with the preprocessing part stays

almost constant regardless of the number of blocks. Algorithm-4 demonstrates the

preprocessing computation. As the function is prototyped in SageMath [67], the

library function division points from SageMath is employed to determine the list of

points of order 3e3 , 5e5 , 7e7 . To simplify the description, the symbols l1, l2, l3 are utilized

59

to represent the values 3, 5, 7 respectively, and x1, x2, x3 are used to represent the

values e3, e5, e7 respectively. Starting from the point at infinity, which is represented

as (0 : 1 : 0) in the projective space, the li-division points list is computed up to xi

steps, where i takes the values of 1, 2, 3. At the same time, the message is converted

into xi-base so that a unique point can be selected at each step based on the distinct

indexing of the list.

Algorithm 4 Preprocessing of single compression hash function to generate a unique
point from the starting elliptic curve

Input: Message M = m1||m2|| · · · ||mk; Starting Elliptic Curve E over Fp2 where
p = 2nl1

x1l2
x2l3

x3 − 1
Output: Point P in elliptic curve E
1: Initialize two points P & P1 point at infinity (0 : 1 : 0) in projective space of curve
E; P ← E[0], P1 ← E[0]

2: for i = 1 to 3 do
3: m←M%xi
4: division points ← List of arbitrarily sorted points Q based on x-axis value so

that liQ = P1

5: j ← 2(m%((l2i − 2)//2)) + 1
6: P1 ← point from division point list at index j
7: for o = 1 to xi − 1 do
8: m← m//xi
9: m′ ← m%xi
10: division points ← List of arbitrarily sorted points Q based on x-axis value so

that liQ = P1

11: j ← m1%l
2
i

12: P1 ← point from division point list at index j
13: end for
14: P ← P + P1

15: end for
16: return Point P

In the first step of xi-steps, there are
l2i−1

2
points to select because the list

obtained from division points function starts with the point at infinity (0 : 1 : 0),

and consecutively lists the two points for each X-axis value. As a result, the X-axis

values in this list are 0, followed by each possible X-values repeated twice. However,

60

in the remaining xi − 1 steps, there would be l2i values to choose from since only one

Y -value appears for each X-value in the output of division points. At each step, the

order of the points in the list increases as a multiple of li, and the order of the finally

chosen point would be lxi
i . For each li, all the points are added to get the initial point

P from the initial elliptic curve.

In addition, the whole preprocessing computation can be further simplified

and sped up by specifying two bases, denoted as Q and R, with the order of E[f].

This may reduce the initial point space. In this case, Q and R could be the two more

additional inputs of the hash algorithm. The initial point P can be computed as

Q+m1R where m1 is the first block of the message.

Hash Algorithm

Let f(x) = x2 + 1 be the irreducible polynomial in the field F where i is the

root of f(x). The elements in the field can be represented as a + bi where a, b ∈ p.

This concept is analogous to complex numbers, where the imaginary unit i is added

to the real numbers. The real and imaginary parts of the element can be referred to

as a and b, respectively. The real and imaginary parts of the X-coordinate of a point

on the elliptic curve are used to increase randomness in proposed hash algorithm.

The flowchart described in figure 4.3 showed the main steps of the proposed

hash algorithm. The input of the proposed single compression hash algorithm is a

supersingular elliptic curve E over Fp2 and message M where the prime of the field

p is 2e23e35e57e7 − 1. Moreover, a point P = (XP : YP : ZP) ∈ E in elliptic curve

E computed in 4.2.1 is also part of the algorithm. The given message M is divided

61

Start

Set p =
2n3e35e57e7 − 1

A Supersingular elliptic
curve E over Fp2

Initial point
P = (XP : YP : ZP) ∈ E

k-block Message
M = m1||m2|| . . . ||mk

where mi = bi1bi2 · · · bin
i > n?

Let X ′ be the
addition of real and
imaginary part of XP

Calculate shifting
index j using n,
e3, e5, e7, and X

′

Set i′ as i%k and
modify the block mi′

by adding it with X ′

Xor’ed all the bits
of index j of the
messages blocks, b

Choose a non-
backtracking 2-
isogeny kernel

point to compute
isogeny ϕ based on b

Set E as co-domain
of isogeny ϕ and XP

as XP mapped by ϕ

Increment i to 1

Output XP

Stop

i = 1 No

Yes

Figure 4.3: Flowchart of the steps of proposed hash algorithm

into k-different blocks so that message M is the concatenation of m1,m2, · · · ,mk

block each consisting of n bits possibly except the last block mk, where n = e2. The

proposed hash algorithm will run through n rounds. In each round of the operation,

the real and imaginary parts of the X-coordinate of the point P are separated, and the

arithmetic addition operation is performed to obtain X ′
P . The value X

′
P , together with

e2, e3, e5, and e7, is used to calculate a unique index j. Additionally, in each round,

X ′
P is added modulo 2n to a message block where the block index is calculated as the

current round number of operation modulo k. Now a bit b is computed by taking the

exclusive or (XOR) of the bit in the index j from all message blocks. The bit b is

decided on the following path for traversing in the isogeny graph. Similar to the CGL,

two non-backtracking path map to bit 0 and 1 through a uniform convention. In the

62

implementation, the assignment of bits 0 and 1 to the two non-backtracking torsion

points is carried out to compute the 2-isogeny, denoted as ϕ. For the next round

of operations, E will be set as the codomain of ϕ or the newly computed isogenous

elliptic curve, and the X-abscissa of the image point P or ϕ(P) is computed.

Algorithm 5 Hash Algorithm

Input: Message M = m1||m2|| · · · ||mk; Montgomery coefficient of Starting Elliptic
Curve E over Fp2 , A where p = 2e23e35e57e7 − 1; Initial point P = (XP : YP :
ZP) ∈ E is part of the algorithm

Output: X-abscissa of Point of order 3e35e57e7 in a supersingular elliptic curve
1: for i = 1 to e2 do
2: real, imaginary ← XP

3: X ′
P ← (real of XP+ imaginary of XP)%2e2

4: i′ ← i%k
5: mi ← (mi′ +X ′

P)%2e2

6: j ← X ′
P%(|2e2 − 3e3|+ |5e5 − 7e7 |) + 1

7: b← 0
8: for l = 1 to k do
9: b← b

⊕
ml[j]

10: end for
11: C ←

√
A2 − 4

12: tp1 ← −A+ C
13: tp2 ← −A− C
14: if b← 1 then
15: tp← min(tp1, tp2)
16: else {b← 0}
17: tp← max(tp1, tp2)
18: end if
19: A← 2− tp2
20: XP ← (XP (XP tp− 2))(2XP − tp)−1

21: end for
22: return XP

An efficient and compact implementation of the proposed hash algorithm

showed in Algorithm 5. Step 2 to 10 of the algorithm maintain the randomness of the

algorithm. A random number X ′
P from XP (X-abscissa of point P) is responsible for

organically modifying a block in each round of operation (step 5). Moreover, a random

63

index j computed in step 6 navigates the next isogenous curve in 2-isogeny graph. The

results from [65, Corollary 1] are utilized in steps 11 to 20 of the algorithm to expedite

the computation process. Specifically let, (a, b) ∈ Fp and E : ay2 = x3 + ax2 + x is a

Montgomery curve. If there is a point Q in E so that Q ≠ (0, 0) and 2Q = OE, then

ϕ : E → Ẽ : by2 = x3 + Ax2 + x = x(x2 + Ax+ 1)

(x, y) 7→ (g(x), yg′(x)),

with b = xQB, a = 2(1− 2xQ)
2 = 2− (−A±

√
A2 − 4)2, and g(x) = x(xxQ − 1)(x−

xQ)
−1. Furthermore, it has been shown in [65, Corollary 1] that the kernel of the

dual of ϕ is ⟨(0, 0)⟩, which is denoted by ker(ϕ̂) = ⟨(0, 0)⟩. Steps 14 to 16 ensure

a deterministic method to select the torsion point by utilizing the minimum and

maximum operations in SageMath, thereby avoiding the random output of the square

root function.

A point on an elliptic curve can be mapped to another point on any isogenous

elliptic curve by the corresponding isogeny. Therefore, it can be stated that the image

point ϕ(P) on Ẽ over Fp2 of any point P on E over Fp2 is random under the isogeny

mapping ϕ. These random distribution characteristics of points under isogeny mapping

play a significant role in making the proposed hash function collision-resistant and

guarantee that the hash function’s output is purely random.

4.2.2 Computational Problems

In this section, an overview of some of the hard problems that underlie the

security and properties of the hash function is presented. Assume that a supersingular

elliptic curve E over Fp2 is the input of the hash function and point P ∈ E is part of

64

the algorithm. Now E and the generator or basis of the point P are public information.

However, as discussed in subsection 4.2.1, the point P is unknown since it depends on

the actual message. Moreover, the order of the curve E and point P are also known

as it depends on the characteristics of the field p. The output of the proposed hash

function is the x-coordinate of point P ′ (x(P ′)) from a hidden elliptic curve E ′. Here

E ′ is an isogenous curve of the known curve E, and P ′ is a mapped point from P ∈ E

under the isogeny. Therefore, an adversary who wants to recover the message from

the hash function’s output must first solve the following problem.

Problem 1. Given x(P ′) ∈ E ′ over Fp2, with the order of the point P ′ is trivially

given, find E ′.

To solve the problem, an attacker must find another supersingular elliptic

curve E ′′ over Fp2 so that point Q ∈ E ′′ with the same x-coordinate as P ′. However,

the elliptic curves can not be uniquely determined by their x-coordinates. The

computational complexity of the problem also depends on the size of the field p, the

algorithms required to search for the supersingular elliptic curve E ′′, and point Q.

However, the problem can also be considered as the hardened variant of the elliptic

curve discrete logarithm problem (ECDLP) [69], which is known to be computationally

infeasible for sufficiently large parameters. As of now, no efficient algorithm is known

to solve the ECDLP, making Problem 1 also a hard computational problem.

Problem 2. Given x(P ′) ∈ E ′ over Fp2, find a sequence of 2-isogeny path from

starting curve E to the curve E ′ where E ′ is unknown.

65

An attacker needs to solve the problem 1 to find E ′ and also needs to solve the

supersingular isogeny problem (SIP) [8] to find the isogeny path from E to E ′. The

best-known quantum algorithm for this problem has exponential quantum running

time [70, §5]. Suppose an adversary knows the endomorphism ring of starting curve E

or can compute using the method described in [17]. The adversary still cannot recover

the hidden message unless they solve both problem 1 and problem 2. Because of these

two problems, the proposed hash function ensures the property of being resistant to

preimage attacks which means finding an input that produces a given output is hard.

4.2.3 Computational Cost and Result

Computational Cost

The computational cost of the proposed hash algorithm depends primarily

on Algorithm 5 since the preprocessing part 4.2.1 to compute the initial point is

done only once at the beginning with almost constant complexity. To analyze the

computational cost, it is assumed that the message consists of a total of k blocks,

with each block being n bits long. From the presented algorithm, it can be observed

that the hash function always executes a fixed number of n rounds of operations,

irrespective of the number of blocks in the message. By excluding trivial computations

such as XOR and addition and assuming a constant runtime for the modulo operation,

the computational cost of the algorithm can be analyzed while focusing primarily on

the field operations performed in each round. Therefore, the analysis can primarily

focus on the field operations performed in each round of the algorithm described in

Algorithm 5. These are:

• One square root (SR) operation in step 11

66

• One inversion (I) operation in step 20

• Two square (S) operations in steps 11 and 19

• Four multiplication (M) operations in steps 20

Table 4.3 presents the computational cost of the proposed hash (SCH), CGL,

and a CGL alike (aCGL) hash function [51]. A more detailed analysis of the

computational cost for the latter two hash functions can be found in [51, §4.3]. The

computation in the table is based on some frequently used assumptions I ≈ 100M ,

S ≈ 0.67M , and SR = (0.67 log p+ 100)M . Additionally, it assumes that n ≈ log p

Table 4.3: Comparison of computational cost

Algorithm Computational Cost in M
SCH n(0.67n+ 205.34)M = Θ(n2)
CGL kn(5.7n+ 110)M = Θ(kn2)
aCGL kn(13.5 log n+ 42.4)M = Θ(kn log n)

Figure 4.4 illustrates the comparison of the computational cost of the three

different hash functions with an assumption of n = 100. The proposed SCH hash

function has a constant computational cost regardless of the number of blocks in the

input. In contrast, the computational cost of the other two hash functions increases

linearly as the number of blocks increases.

Simulation Result

The implementation and evaluation of the proposed single compression hash

function are performed using SageMath [67], which is an open-source and multi-

platform mathematical software. The algorithm simulated on a 64 bit processor

Intel®CoreTM i5-7500 CPU @ 3.40GHz x 4 with Ubuntu 18.04.6 LTS operating

67

1 2 3 4 5 6 7
Number of blocks k

0

100000

200000

300000

400000

500000

C
om

pu
ta

tio
na

l c
os

t i
n

M

SCH
CGL
aCGL

Figure 4.4: Comparison of computational cost for hash functions

system. Different prime fields p of the form 2e23e35e57e7−1 are selected for the purpose

of evaluating the proposed hash function. The total number of collisions is then

determined by examining all possible combinations of e2 bits, which represents a

single block, for each field. Here collision refers to when two or more bitstream result

same point on an elliptic curve starting from a fixed supersingular elliptic curve. The

simulation results show no collision for a single block of e2 bits for any of the tested

fields. The initial starting curve used in the implementation is the SIKE proposed

supersingular elliptic curve with the equation y2 = x3 + 6x2 + x. Table 4.4 displays

the tested block sizes n and the corresponding orders of initial points f , where the

prime of the field p is 2nf − 1.

4.2.4 Conclusion

A new supersingular isogeny-based cryptographic hash function is presented in

this study. The hash function comprises two steps: Preprocessing and Hash Algorithm.

In the preprocessing step, a point is selected from the initial supersingular elliptic curve.

During the hash algorithm process, the chosen point is mapped through a traversal of

68

Table 4.4: Parameter for single block message simulation of the proposed hash
function

Block Size n (Exponent of 2) Order of initial point f
4 325170

5 315171

6 315171

7 345170

8 315171

9 335171

10 335271

11 335371

12 335172

13 315372

14 315372

15 335272

16 315473

a supersingular isogeny graph based on the message until reaching the final traversed

curve. Furthermore, the compact algorithm of the hash function is demonstrated

by leveraging the fixed backtracking isogeny properties of the Montgomery curve.

The proposed hash function shows a constant computational complexity irrespective

of the number of message blocks. It is worth noting that, at present, no efficient

quantum algorithm has been developed to solve the underlying computational problem,

rendering the hash function resistant to quantum attacks. Consequently, the proposed

hash function can be considered quantum secure.

CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

The integration of enhanced autonomy and security within computing systems

has the potential to bring about revolutionary changes in various aspects. By adopting

decentralized architectures like Blockchain, computing systems can reduce dependence

on centralized authorities and foster trust through peer-to-peer interactions. This shift

towards decentralization enables greater transparency, immutability, and resilience in

data storage and transactions. Moreover, utilizing distributed networks and redundant

storage in these decentralized systems enhances their resilience and availability. Even

in the face of disruptions or attacks, the distributed nature of the system ensures

uninterrupted operation and mitigates the risks associated with single points of failure.

In light of the emerging threat landscape presented by quantum computing, the

incorporation of quantum secure hash becomes crucial for future computing systems.

Quantum secure hash functions play a significant role in enhancing the security and

reliability of data and communications in the presence of quantum adversaries. These

hash functions enable the development of interoperable and compatible solutions with

existing cryptographic standards and protocols that rely on hash functions, ensuring

a seamless transition to quantum-secure systems.

69

70

This dissertation explores two crucial tools which hold great potential for

enhancing autonomy and security in future computing systems: Blockchain consensus

mechanisms and supersingular isogeny hash functions. The first topic proposes two

mobile-friendly consensus mechanisms which can effectively address the root causes of

various attacks in Blockchain, such as centralization in mining, forking in the chain, and

external attacks like DDoS and DNS attacks. The Proof of Sincerity consensus method

tackles the issues of monopolization and limited user participation in Blockchain

systems by combining it with existing proof of work schemes. Additionally, a Blockchain

consensus mechanism for Blockchain storage was introduced, ensuring decentralized

system operation and increased user participation through the probabilistically fair

rotation for selecting validators and dividing blocks into multiple sections. These

consensus mechanisms are designed to increase user participation in the network,

promoting decentralization and preventing a single group of users from controlling the

entire network. The implementation of such consensus mechanisms can significantly

contribute to the development of future autonomous computing systems.

In the study of supersingular isogeny hash, four compact implementations of the

CGL hash function based on 2-isogeny sequences were presented. The Legendre and

Montgomery forms demonstrated the best computation time by effectively utilizing

fixed backtracking isogeny properties, overcoming the performance bottleneck of the

standard CGL function. Furthermore, a new cryptographic hash function based on

supersingular isogenies was introduced. It involves a preprocessing step where a point

is selected from the initial supersingular elliptic curve and a hash algorithm that

maps the chosen point through a supersingular isogeny graph based on the message.

71

The resulting hash function exhibits resistance to quantum attacks due to the lack of

efficient quantum algorithms to solve the underlying computational problem, ensuring

its security in the face of potential quantum advancements.

5.2 Future Works

5.2.1 Study on Legendre Curve

From the given definition 4.1.3 of a Legendre form of an elliptic curve, expressed

as Eλ : y2 = x(x− 1)(x− λ), it can be observed that there is a distinct relationship

among the Legendre coefficients. Specifically, any of the following Legendre coefficients:

λ, λ−1, (1−λ), (1−λ)−1, λ(λ− 1)−1, (λ− 1)λ−1 will yield an isomorphic curve E. This

characteristic is unique to the Legendre form, as no other form of an elliptic curve

exhibits such a simple relationship among the coefficients of isomorphic curves. It

is worth noting that the existing literature needs more detailed information on how

these Legendre coefficients are interrelated in the context of 2-isogenous curves.

As a result, one promising future direction is to conduct an in-depth study

of these relationships and leverage this knowledge to simplify the computation of

non-backtracking isogenies. If efficient relations can be established, the outcomes

can be utilized to design more efficient encryption and decryption algorithms. By

exploiting the inherent connections among the Legendre coefficients, it may be possible

to optimize cryptographic operations and enhance the overall efficiency and security

of isogeny-based elliptic curve systems.

72

5.2.2 Post-Quantum Blockchain

The combination of the topics discussed in this dissertation holds potential

for an intriguing application: post-quantum Blockchain. In Blockchain, various

cryptographic tools are employed to ensure the system’s security and integrity. One

such tool is the hash function, which serves multiple purposes, such as generating

unique identifiers for blocks, verifying data integrity, and creating digital signatures.

Additionally, digital signatures based on public key cryptography, also known as

asymmetric cryptography, are utilized in Blockchain to authenticate and ensure the

integrity of digital messages and transactions. This involves using a private key to

generate a signature and a corresponding public key to verify it. However, the rise of

quantum computers poses a threat to these cryptographic tools. Quantum computers

have the potential to break the underlying algorithms that secure hash functions

and public key cryptography. As a result, there is a need to explore future research

directions that seamlessly integrate post-quantum cryptography (PQC) tools into the

existing Blockchain architecture. This would involve investigating new cryptographic

algorithms and protocols resistant to quantum attacks while maintaining the desirable

properties of security, efficiency, and scalability. By addressing the challenge of

post-quantum security in Blockchain, we can ensure this transformative technology’s

continued resilience and long-term viability.

Some of the Blockchain consensus mechanisms, such as proof of time and proof

of space-time, employ a cryptographic tool called a verifiable delay function (VDF).

The purpose of a VDF is to ensure that participants in the network have actively

participated for a certain amount of time in the consensus process or within the

73

network. A VDF can be defined as a function that requires a specified number of

sequential steps to evaluate yet produces a unique output that can be efficiently and

publicly verified [71]. The VDF algorithm consists of three main steps. Firstly, the

setup phase generates a pair of public parameters, namely the evaluation key (ek)

and the verification key (vk), based on the security and puzzle difficulty parameters.

Secondly, the evaluation phase takes an input element and the evaluation key to

produce an output element along with an optional proof. Finally, the verification

phase determines the correctness of the evaluation output by using the verification

key, input, output, and proof.

However, similar to other cryptographic schemes, VDFs are vulnerable to

attacks by quantum computers. To address this, isogeny-based VDFs have emerged

as a promising option in post-quantum cryptography due to their potential resistance

against quantum attacks. One specific isogeny-based VDF [72] has been proposed,

demonstrating partial quantum resistance. However, this algorithm requires a trusted

setup process to generate the initial parameters.

The setup process involves selecting a prime number, a difficulty parameter,

a supersingular elliptic curve, and a generator point. Additionally, a random non-

backtracking walk of a specified length is computed as a composition of 2-isogenies.

The dual of this walk is also computed, along with the image of the generator point.

The resulting public parameters are the evaluation key and the necessary curve-related

information. In the evaluation process, a point from the target curve is chosen, and

the output of the process is the evaluation of this point using the computed 2-isogeny.

74

The verification process involves computing two Weil pairings [73] and checking their

equality.

The public parameter of the VDF reveals the initial and final curves and the

image of a point on the graph. If an adversary can break the SIDH problem using

this information, as shown in [9–11], they can also break the VDF. Moreover, if the

endomorphism ring of the initial curve E is known or computable, the adversary

can exploit it to find shortcuts on the graph. In light of these vulnerabilities, future

research directions aim to identify and address the weaknesses of SIDH-inspired VDF

algorithms by constructing quantum-secure VDF alternatives.

BIBLIOGRAPHY

[1] Lier, B. Blockchain technology: The autonomy and self-organisation of cyber-
physical systems. Business Transformation Through Blockchain: Volume I. pp.
145-167 (2019)

[2] Queralta, J., Qingqing, L., Zou, Z. & Westerlund, T. Enhancing Autonomy with
Blockchain and Multi-Access Edge Computing in Distributed Robotic Systems.
2020 Fifth International Conference On Fog And Mobile Edge Computing (FMEC).
pp. 180-187 (2020)

[3] Zhang, H., Leng, S., Wu, F. & Chai, H. A DAG Blockchain-Enhanced User-
Autonomy Spectrum Sharing Framework for 6G-Enabled IoT. IEEE Internet Of
Things Journal. 9, 8012-8023 (2022)

[4] P. W. Shor, Algorithms for quantum computation: discrete logarithms and
factoring, Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, NM, (1994).

[5] Webber, M., Elfving, V., Weidt, S. & Hensinger, W. The impact of hardware
specifications on reaching quantum advantage in the fault tolerant regime. AVS
Quantum Science. 4, 013801 (2022)

[6] Sciences, E., Medicine & Others Quantum computing: progress and prospects.
(National Academies Press,2019)

[7] Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., Feo, L., Hess, B.,
Jalali, A., Koziel, B., LaMacchia, B., Longa, P., Hutchinson, A. & Others
Supersingular isogeny key encapsulation. Submission To The NIST Post-Quantum
Standardization Project. 152 pp. 154-155 (2017)

[8] Feo, L., Jao, D. & Plût, J. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. Journal Of Mathematical Cryptology. 8,
209-247 (2014), https://doi.org/10.1515/jmc-2012-0015

[9] Castryck, W. & Decru, T. An Efficient Key Recovery Attack on SIDH. Advances

75

76

In Cryptology – EUROCRYPT 2023. pp. 423-447 (2023)

[10] Maino, L. & Martindale, C. An attack on SIDH with arbitrary
starting curve. (Cryptology ePrint Archive, Paper 2022/1026,2022),
https://eprint.iacr.org/2022/1026, https://eprint.iacr.org/2022/1026

[11] Robert, D. Breaking SIDH in polynomial time. (Cryptology ePrint
Archive, Paper 2022/1038,2022), https://eprint.iacr.org/2022/1038,
https://eprint.iacr.org/2022/1038

[12] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography
Mailing List At Https://metzdowd.com. (2009,3)

[13] Brassard, G., HØyer, P. & Tapp, A. Quantum cryptanalysis of hash and claw-free
functions. LATIN’98: Theoretical Informatics. pp. 163-169 (1998),

[14] Bernstein, D. Cost analysis of hash collisions : will quantum computers make
SHARCS obsolete?. (2009)

[15] Charles, D., Lauter, K. & Goren, E. Cryptographic Hash Functions from Expander
Graphs. Journal Of Cryptology. 22 pp. 93-113 (2008,12)

[16] Booher, J., Bowden, R., Doliskani, J., Fouotsa, T., Galbraith, S., Kunzweiler,
S., Merz, S., Petit, C., Smith, B., Stange, K., Ti, Y., Vincent, C., Voloch, J.,
Weitkämper, C. & Zobernig, L. Failing to hash into supersingular isogeny graphs.
(2022,4), 31 pages, 7 figures

[17] Eisentraeger, K., Hallgren, S., Leonardi, C., Morrison, T. & Park, J. Computing
endomorphism rings of supersingular elliptic curves and connections to pathfinding
in isogeny graphs. (2020)

[18] Dwork, C. & Naor, M. Pricing via Processing or Combatting Junk Mail. Proceed-
ings Of The 12th Annual International Cryptology Conference On Advances In
Cryptology. pp. 139-147 (1993), http://dl.acm.org/citation.cfm?id=646757.705669

[19] Lilly, G. Device for and method of one-way cryptographic hashing. (2004)

[20] Möser, M., Böhme, R. & Breuker, D. An inquiry into money laundering tools
in the Bitcoin ecosystem. 2013 APWG ECrime Researchers Summit. pp. 1-14

77

(2013)

[21] O’Dwyer, K. & Malone, D. Bitcoin mining and its energy footprint. 25th IET Irish
Signals Systems Conference 2014 And 2014 China-Ireland International Con-
ference On Information And Communications Technologies (ISSC 2014/CIICT
2014). pp. 280-285 (2014,6)

[22] Taylor, M. Bitcoin and the age of Bespoke Silicon. 2013 International Conference
On Compilers, Architecture And Synthesis For Embedded Systems (CASES). pp.
1-10 (2013)

[23] Karame, G., Androulaki, E. & Capkun, S. Double-spending Fast Payments in
Bitcoin. Proceedings Of The 2012 ACM Conference On Computer And Communi-
cations Security. pp. 906-917 (2012), http://doi.acm.org/10.1145/2382196.2382292

[24] Narayanan, A., Bonneau, N., Felten, E., Miller, A. & Goldreich, O. Bitcoin and
Cryptocurrency Security. IEEE Security & Privacy. (2016)

[25] King, S. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Self-published
Paper. (2012)

[26] Bentov, I., Lee, C. & Mizrahi, A. Cryptocurrencies Without Proof of Work.
Proceedings Of The 2016 ACM SIGSAC Conference On Computer And Commu-
nications Security. pp. 1428-1440 (2016)

[27] Larimer, D. Delegated proof-of-stake. White Paper. (2014),
https://www.bitsharestalk.org/index.php/board,4.0.html

[28] Bentov, I., Lee, C., Mizrahi, A. & Rosenfeld, M. Proof of Activ-
ity: Extending Bitcoin’s Proof of Work via Proof of Stake [Extended
Abstract]Y. SIGMETRICS Perform. Eval. Rev.. 42, 34-37 (2014,12),
http://doi.acm.org/10.1145/2695533.2695545

[29] Dziembowski, S., Faust, S., Kolmogorov, V. & Pietrzak, K. Proofs of Space. (Cryp-
tology ePrint Archive, Paper 2013/796,2013), https://eprint.iacr.org/2013/796,
https://eprint.iacr.org/2013/796

[30] Pouwelse, J., Garbacki, P., Epema, D. & Sips, H. The Bittorrent P2P File-Sharing
System: Measurements and Analysis. Peer-to-Peer Systems IV. pp. 205-216 (2005)

78

[31] Wilkinson, S. Storj A Peer-to-Peer Cloud Storage Network. (2014)

[32] Maymounkov, P. & Mazières, D. Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric. Revised Papers From The
First International Workshop On Peer-to-Peer Systems. pp. 53-65 (2002),
http://dl.acm.org/citation.cfm?id=646334.687801

[33] Vorick, D. & Champine, L. Sia: Simple Decentralized Storage. (2014)

[34] Kamara, S. Proofs of Storage: Theory, Constructions and Applications. Algebraic
Informatics. pp. 7-8 (2013)

[35] Benet, J. IPFS - Content Addressed, Versioned, P2P File System. CoRR.
abs/1407.3561 (2014), http://arxiv.org/abs/1407.3561

[36] Labs, P. Filecoin: A Decentralized Storage Network. (2017)

[37] Lara-Nino, C., Dı́az-Pérez, A. & Morales-Sandoval, M. Elliptic Curve Lightweight
Cryptography: A Survey. IEEE Access. PP pp. 1-1 (2018,11)

[38] Silverman, J. Heights and elliptic curves. Arithmetic Geometry. pp. 253-265 (1986)

[39] Childs, A., Jao, D. & Soukharev, V. Constructing elliptic curve isogenies in
quantum subexponential time. Journal Of Mathematical Cryptology. 8, 1-29
(2014), https://doi.org/10.1515/jmc-2012-0016

[40] Galbraith, S. & Vercauteren, F. Computational problems in supersingular
elliptic curve isogenies. (Cryptology ePrint Archive, Paper 2017/774,2017),
https://eprint.iacr.org/2017/774

[41] Vélu, J. Isogénies entre courbes elliptiques. Comptes-Rendus De L’Académie Des
Sciences, Série I. 273 pp. 238-241 (1971)

[42] Mestre, J. La méthode des graphes. Exemples et applications. Proceedings Of
The International Conference On Class Numbers And Fundamental Units Of
Algebraic Number Fields (Katata). pp. 217-242 (1986)

[43] Pizer, A. Ramanujan graphs and Hecke operators. Bulletin Of The American
Mathematical Society. 23, 127-137 (1990)

79

[44] Pizer, A. Ramanujan graphs. Computational perspectives on number theory
(Chicago, IL, 1995), 159–178. AMS/IP Stud. Adv. Math. 7

[45] Lubotzky, A., Phillips, R. & Sarnak, P. Ramanujan graphs. Combinatorica. 8,
261-277 (1988)

[46] Costache, A., Feigon, B., Lauter, K., Massierer, M. & Puskás, A. Ramanujan
Graphs in Cryptography. Research Directions In Number Theory. pp. 1-40 (2019)

[47] Zaman, M., Hutchinson, A. & Min, M. Implementation Aspects of Supersingular
Isogeny-Based Cryptographic Hash Function. Wireless Internet: 15th EAI Inter-
national Conference, WiCON 2022, Virtual Event, November 2022, Proceedings.
pp. 14-27 (2023)

[48] Goldreich, O. Candidate one-way functions based on expander graphs. Studies
In Complexity And Cryptography. Miscellanea On The Interplay Between
Randomness And Computation. pp. 76-87 (2011)

[49] Lauter, K., Charles, D. & Goren, E. Pseudorandom number generation with
expander graphs. (Google Patents,2011), US Patent 7,907,726

[50] Yoshida, R. & Takashima, K. Simple Algorithms for Computing a Sequence of 2-
Isogenies. Information Security And Cryptology - ICISC 2008, 11th International
Conference, Seoul, Korea, December 3-5, 2008, Revised Selected Papers. 5461 pp.
52-65 (2008), https://doi.org/10.1007/978-3-642-00730-9

[51] Doliskani, J., Pereira, G. & Barreto, P. Faster Cryptographic Hash Function
From Supersingular Isogeny Graphs. IACR Cryptol. EPrint Arch.. 2017 pp. 1202
(2017)

[52] Panny, L. Isogeny-based hashing despite known endomorphisms. IACR Cryptol.
EPrint Arch.. 2019 pp. 927 (2019)

[53] Tachibana, H., Takashima, K. & Takagi, T. Constructing an efficient hash function
from 3-isogenies. JSIAM Lett.. 9 pp. 29-32 (2017)

[54] Zaman, M., Shen, T. & Min, M. Proof of Sincerity: A New Lightweight
Consensus Approach for Mobile Blockchains. 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC). pp. 1-4 (2019)

80

[55] Uz Zaman, M. & Min, M. Decentrally-Consented-Server-Based Blockchain System
for Universal Types of Data. 2020 International Symposium On Networks,
Computers And Communications (ISNCC). pp. 1-6 (2020)

[56] Beikverdi, A. & Song, J. Trend of centralization in Bitcoin’s distributed network.
2015 IEEE/ACIS 16th International Conference On Software Engineering,
Artificial Intelligence, Networking And Parallel/Distributed Computing (SNPD).
pp. 1-6 (2015,6)

[57] Barkatullah, J. & Hanke, T. Goldstrike 1: CoinTerra’s First-Generation
Cryptocurrency Mining Processor for Bitcoin. IEEE Micro. 35, 68-76 (2015,3)

[58] Nash, J. Equilibrium points in n-person games. Proceedings Of The National
Academy Of Sciences. 36, 48-49 (1950), https://www.pnas.org/content/36/1/48

[59] Reny, P., Osborne, M. & Rubinstein, A. A Course in Game Theory. (1994)

[60] Mckelvey, R., Mclennan, A. & Turocy, T. Gambit: Software tools for game theory,
Version 16.0.1.. (2016), http://www.gambit-project.org

[61] Govindan, S. & Wilson, R. A global Newton method to compute Nash equilibria.
Journal Of Economic Theory. 110 pp. 65-86 (2003,5)

[62] Cassandras, C. & Lafortune, S. Introduction to Discrete Event Systems. (Springer
Publishing Company, Incorporated,2010)

[63] Leon-Garcia, A. Probability, Statistics, and Random Processes for Electrical
Engineering. (Pearson/Prentice Hall,2008)

[64] Sutherland, A. Lecture 6: Isogeny kernels and division
polynomials. Elliptic Curves—MIT Course No. 18.783. (2019),
https://math.mit.edu/classes/18.783/2019/LectureNotes6.pdf, MIT
OpenCourseWare

[65] Renes, J. Computing Isogenies Between Montgomery Curves Using the Action of
(0, 0). Post-Quantum Cryptography - 9th International Conference, PQCrypto
2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings. 10786 pp.
229-247 (2018), https://doi.org/10.1007/978-3-319-79063-3

81

[66] Elliott, J. & Hutchinson, A. Supersingular Isogeny Diffie-Hellman with
Legendre Form. (Cryptology ePrint Archive, Paper 2022/870,2022),
https://eprint.iacr.org/2022/870, https://eprint.iacr.org/2022/870

[67] Stein, W. & Others Sage Mathematics Software (Version 9.4.0). (The Sage
Development Team,2021), http://www.sagemath.org

[68] Silverman, J. Arithmetic of elliptic curves. Springer-Verlag. pp. 39-48 (1994),
Chapter 3, Section 3

[69] Koblitz, N. Elliptic curve cryptosystems. Mathematics Of Computation. 48,
203-209 (1987)

[70] Jao, D. & Feo, L. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. International Workshop On Post-Quantum Cryptography.
pp. 19-34 (2011)

[71] Boneh, D., Bonneau, J., Bünz, B. & Fisch, B. Verifiable Delay Functions. Advances
In Cryptology – CRYPTO 2018. pp. 757-788 (2018)

[72] De Feo, L., Masson, S., Petit, C. & Sanso, A. Verifiable Delay Functions from
Supersingular Isogenies and Pairings. Advances In Cryptology – ASIACRYPT
2019. pp. 248-277 (2019)

[73] Miller, V. The Weil pairing, and its efficient calculation. Journal Of Cryptology.
17, 235-261 (2004)

	Author:
	Date:

